Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the direction of the acceleration of the ball after being hit by the bat, we need to follow these steps:
### 1. Determine the initial and final velocity components
We start by finding the x and y components of both the initial and final velocities.
Initial Velocity (before the hit):
- Magnitude: [tex]\(v_1 = 2.15 \, \text{m/s}\)[/tex]
- Angle: [tex]\(\theta_1 = -72.0^\circ\)[/tex]
To find the components:
[tex]\[ v_{1x} = v_1 \cos(\theta_1) = 2.15 \cos(-72.0^\circ) \approx 0.664 \, \text{m/s} \][/tex]
[tex]\[ v_{1y} = v_1 \sin(\theta_1) = 2.15 \sin(-72.0^\circ) \approx -2.045 \, \text{m/s} \][/tex]
Final Velocity (after the hit):
- Magnitude: [tex]\(v_2 = 3.12 \, \text{m/s}\)[/tex]
- Angle: [tex]\(\theta_2 = 135.0^\circ\)[/tex]
To find the components:
[tex]\[ v_{2x} = v_2 \cos(\theta_2) = 3.12 \cos(135.0^\circ) \approx -2.206 \, \text{m/s} \][/tex]
[tex]\[ v_{2y} = v_2 \sin(\theta_2) = 3.12 \sin(135.0^\circ) \approx 2.206 \, \text{m/s} \][/tex]
### 2. Calculate the change in velocity components
Next, we find the change in the velocity components (i.e., the differences between the final and initial components):
[tex]\[ \Delta v_x = v_{2x} - v_{1x} = -2.206 - 0.664 \approx -2.871 \, \text{m/s} \][/tex]
[tex]\[ \Delta v_y = v_{2y} - v_{1y} = 2.206 - (-2.045) \approx 4.251 \, \text{m/s} \][/tex]
### 3. Determine the acceleration components
Acceleration [tex]\(a_x\)[/tex] and [tex]\(a_y\)[/tex] can be obtained by dividing these changes in velocity by the time of contact [tex]\( t = 0.28 \, \text{s} \)[/tex]:
[tex]\[ a_x = \frac{\Delta v_x}{t} = \frac{-2.871}{0.28} \approx -10.252 \, \text{m/s}^2 \][/tex]
[tex]\[ a_y = \frac{\Delta v_y}{t} = \frac{4.251}{0.28} \approx 15.182 \, \text{m/s}^2 \][/tex]
### 4. Calculate the direction of the acceleration
Finally, we find the direction (angle) [tex]\(\theta_{\text{acc}}\)[/tex] of the acceleration using the tangent function:
[tex]\[ \theta_{\text{acc}} = \tan^{-2} \left(\frac{a_y}{a_x}\right) = \tan^{-1}\left(\frac{15.182}{-10.252}\right) \][/tex]
This gives us:
[tex]\[ \theta_{\text{acc}} \approx 124.03^\circ \][/tex]
So, the direction of the acceleration of the ball is approximately [tex]\( 124.03^\circ \)[/tex].
### 1. Determine the initial and final velocity components
We start by finding the x and y components of both the initial and final velocities.
Initial Velocity (before the hit):
- Magnitude: [tex]\(v_1 = 2.15 \, \text{m/s}\)[/tex]
- Angle: [tex]\(\theta_1 = -72.0^\circ\)[/tex]
To find the components:
[tex]\[ v_{1x} = v_1 \cos(\theta_1) = 2.15 \cos(-72.0^\circ) \approx 0.664 \, \text{m/s} \][/tex]
[tex]\[ v_{1y} = v_1 \sin(\theta_1) = 2.15 \sin(-72.0^\circ) \approx -2.045 \, \text{m/s} \][/tex]
Final Velocity (after the hit):
- Magnitude: [tex]\(v_2 = 3.12 \, \text{m/s}\)[/tex]
- Angle: [tex]\(\theta_2 = 135.0^\circ\)[/tex]
To find the components:
[tex]\[ v_{2x} = v_2 \cos(\theta_2) = 3.12 \cos(135.0^\circ) \approx -2.206 \, \text{m/s} \][/tex]
[tex]\[ v_{2y} = v_2 \sin(\theta_2) = 3.12 \sin(135.0^\circ) \approx 2.206 \, \text{m/s} \][/tex]
### 2. Calculate the change in velocity components
Next, we find the change in the velocity components (i.e., the differences between the final and initial components):
[tex]\[ \Delta v_x = v_{2x} - v_{1x} = -2.206 - 0.664 \approx -2.871 \, \text{m/s} \][/tex]
[tex]\[ \Delta v_y = v_{2y} - v_{1y} = 2.206 - (-2.045) \approx 4.251 \, \text{m/s} \][/tex]
### 3. Determine the acceleration components
Acceleration [tex]\(a_x\)[/tex] and [tex]\(a_y\)[/tex] can be obtained by dividing these changes in velocity by the time of contact [tex]\( t = 0.28 \, \text{s} \)[/tex]:
[tex]\[ a_x = \frac{\Delta v_x}{t} = \frac{-2.871}{0.28} \approx -10.252 \, \text{m/s}^2 \][/tex]
[tex]\[ a_y = \frac{\Delta v_y}{t} = \frac{4.251}{0.28} \approx 15.182 \, \text{m/s}^2 \][/tex]
### 4. Calculate the direction of the acceleration
Finally, we find the direction (angle) [tex]\(\theta_{\text{acc}}\)[/tex] of the acceleration using the tangent function:
[tex]\[ \theta_{\text{acc}} = \tan^{-2} \left(\frac{a_y}{a_x}\right) = \tan^{-1}\left(\frac{15.182}{-10.252}\right) \][/tex]
This gives us:
[tex]\[ \theta_{\text{acc}} \approx 124.03^\circ \][/tex]
So, the direction of the acceleration of the ball is approximately [tex]\( 124.03^\circ \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.