At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this, we need to determine [tex]\((f+g)(x)\)[/tex], which represents the sum of the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].
Given:
[tex]\[ f(x) = x - 9 \][/tex]
[tex]\[ g(x) = 6x^2 \][/tex]
The combined function [tex]\((f+g)(x)\)[/tex] is found by summing [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]
Substituting the given expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f+g)(x) = (x - 9) + (6x^2) \][/tex]
Combining like terms, we get:
[tex]\[ (f+g)(x) = 6x^2 + x - 9 \][/tex]
So, the simplified form of [tex]\((f+g)(x)\)[/tex] is:
[tex]\[ (f+g)(x) = 6x^2 + x - 9 \][/tex]
Now, we need to determine the domain of the function [tex]\((f+g)(x)\)[/tex]. The individual functions [tex]\(f(x) = x - 9\)[/tex] and [tex]\(g(x) = 6x^2\)[/tex] are both defined for all real numbers, since there are no restrictions such as division by zero or square roots of negative numbers.
Therefore, the domain of [tex]\((f+g)(x)\)[/tex] is:
[tex]\[ \text{Domain} = \text{all real numbers} \][/tex]
In summary:
[tex]\[ (f+g)(x) = 6x^2 + x - 9 \][/tex]
The domain is all real numbers.
Given:
[tex]\[ f(x) = x - 9 \][/tex]
[tex]\[ g(x) = 6x^2 \][/tex]
The combined function [tex]\((f+g)(x)\)[/tex] is found by summing [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f+g)(x) = f(x) + g(x) \][/tex]
Substituting the given expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ (f+g)(x) = (x - 9) + (6x^2) \][/tex]
Combining like terms, we get:
[tex]\[ (f+g)(x) = 6x^2 + x - 9 \][/tex]
So, the simplified form of [tex]\((f+g)(x)\)[/tex] is:
[tex]\[ (f+g)(x) = 6x^2 + x - 9 \][/tex]
Now, we need to determine the domain of the function [tex]\((f+g)(x)\)[/tex]. The individual functions [tex]\(f(x) = x - 9\)[/tex] and [tex]\(g(x) = 6x^2\)[/tex] are both defined for all real numbers, since there are no restrictions such as division by zero or square roots of negative numbers.
Therefore, the domain of [tex]\((f+g)(x)\)[/tex] is:
[tex]\[ \text{Domain} = \text{all real numbers} \][/tex]
In summary:
[tex]\[ (f+g)(x) = 6x^2 + x - 9 \][/tex]
The domain is all real numbers.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.