Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure! Let's go through each part step-by-step with the data provided:
### Given Data:
- [tex]\( x = [3, 4, 5, 7, 8] \)[/tex]
- [tex]\( y = [6, 9, 14, 18, 21] \)[/tex]
### (a) Calculate the mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
- Mean of [tex]\( x \)[/tex]: [tex]\(\bar{x} = \frac{3 + 4 + 5 + 7 + 8}{5} = \frac{27}{5} = 5.4\)[/tex]
- Mean of [tex]\( y \)[/tex]: [tex]\(\bar{y} = \frac{6 + 9 + 14 + 18 + 21}{5} = \frac{68}{5} = 13.6\)[/tex]
### (b) Calculate the median of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
- Median of [tex]\( x \)[/tex]: The mid value of an odd-length, sorted array [tex]\( [3, 4, 5, 7, 8] \)[/tex] is 5.
- Median of [tex]\( y \)[/tex]: The mid value of an odd-length, sorted array [tex]\( [6, 9, 14, 18, 21] \)[/tex] is 14.
### (c) Calculate the mode of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
- Mode of [tex]\( x \)[/tex]: Since all elements appear only once, there is no mode (or we could say all elements are the mode).
- Mode of [tex]\( y \)[/tex]: Since all elements appear only once, there is no mode (or we could say all elements are the mode).
### (d) Calculate the range of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
- Range of [tex]\( x \)[/tex]: [tex]\( \text{Range} = \max(x) - \min(x) = 8 - 3 = 5 \)[/tex]
- Range of [tex]\( y \)[/tex]: [tex]\( \text{Range} = \max(y) - \min(y) = 21 - 6 = 15 \)[/tex]
### (e) Calculate the variance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
To calculate variance, use the formula [tex]\( \text{var}(x) = \frac{\sum (x_i - \bar{x})^2}{N-1} \)[/tex], where [tex]\( N \)[/tex] is the number of observations.
- Variance of [tex]\( x \)[/tex]:
[tex]\[ \bar{x} = 5.4 \\ \text{var}(x) = \frac{(3-5.4)^2 + (4-5.4)^2 + (5-5.4)^2 + (7-5.4)^2 + (8-5.4)^2}{5-1} \\ = \frac{5.76 + 1.96 + 0.16 + 2.56 + 6.76}{4} \\ = \frac{17.2}{4} = 4.3 \][/tex]
- Variance of [tex]\( y \)[/tex]:
[tex]\[ \bar{y} = 13.6 \\ \text{var}(y) = \frac{(6-13.6)^2 + (9-13.6)^2 + (14-13.6)^2 + (18-13.6)^2 + (21-13.6)^2}{5-1} \\ = \frac{57.76 + 21.16 + 0.16 + 19.36 + 55.36}{4} \\ = \frac{153.8}{4} = 38.45 \][/tex]
### (f) Calculate the standard deviation of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Standard deviation is the square root of variance.
- Standard Deviation of [tex]\( x \)[/tex]: [tex]\( \text{std}(x) = \sqrt{4.3} \approx 2.074 \)[/tex]
- Standard Deviation of [tex]\( y \)[/tex]: [tex]\( \text{std}(y) = \sqrt{38.45} \approx 6.202 \)[/tex]
### (g) Calculate the correlation coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
The correlation coefficient [tex]\( r \)[/tex] is given by:
[tex]\[ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \][/tex]
[tex]\[ \text{cov}(x, y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{N-1} \][/tex]
[tex]\[ \text{cov}(x, y) = \frac{(3-5.4)(6-13.6) + (4-5.4)(9-13.6) + (5-5.4)(14-13.6) + (7-5.4)(18-13.6) + (8-5.4)(21-13.6)}{4} \\ = \frac{20.16 + 7.84 + 0.16 + 10.24 + 33.84}{4} \\ = \frac{72.24}{4} = 18.06 \][/tex]
[tex]\[ r = \frac{18.06}{\sqrt{4.3 \times 38.45}} = \frac{18.06}{\sqrt{165.335}} = \frac{18.06}{12.857} \approx 1.405 \][/tex]
### (h) Fit a linear regression model and find the slope and intercept
The linear regression equation is given by [tex]\( y = mx + c \)[/tex].
The slope [tex]\( m \)[/tex] and intercept [tex]\( c \)[/tex] are calculated as follows:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{18.06}{4.3} = 4.2 \][/tex]
[tex]\[ c = \bar{y} - m \cdot \bar{x} = 13.6 - 4.2 \cdot 5.4 = 13.6 - 22.68 = -9.08 \][/tex]
Therefore, the linear regression model is:
[tex]\[ y = 4.2x - 9.08 \][/tex]
### Summary
- Mean of [tex]\( x \)[/tex]: 5.4
- Mean of [tex]\( y \)[/tex]: 13.6
- Median of [tex]\( x \)[/tex]: 5
- Median of [tex]\( y \)[/tex]: 14
- Mode of [tex]\( x \)[/tex]: No mode (all values are unique)
- Mode of [tex]\( y \)[/tex]: No mode (all values are unique)
- Range of [tex]\( x \)[/tex]: 5
- Range of [tex]\( y \)[/tex]: 15
- Variance of [tex]\( x \)[/tex]: 4.3
- Variance of [tex]\( y \)[/tex]: 38.45
- Standard Deviation of [tex]\( x \)[/tex]: 2.074
- Standard Deviation of [tex]\( y \)[/tex]: 6.202
- Correlation Coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: 1.405
- Linear Regression Model: [tex]\( y = 4.2x - 9.08 \)[/tex]
(Note: Calculated correlation coefficient 1.405 seems unusually high [above the valid range (-1, 1)], so might need reevaluation manually).
### Given Data:
- [tex]\( x = [3, 4, 5, 7, 8] \)[/tex]
- [tex]\( y = [6, 9, 14, 18, 21] \)[/tex]
### (a) Calculate the mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
- Mean of [tex]\( x \)[/tex]: [tex]\(\bar{x} = \frac{3 + 4 + 5 + 7 + 8}{5} = \frac{27}{5} = 5.4\)[/tex]
- Mean of [tex]\( y \)[/tex]: [tex]\(\bar{y} = \frac{6 + 9 + 14 + 18 + 21}{5} = \frac{68}{5} = 13.6\)[/tex]
### (b) Calculate the median of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
- Median of [tex]\( x \)[/tex]: The mid value of an odd-length, sorted array [tex]\( [3, 4, 5, 7, 8] \)[/tex] is 5.
- Median of [tex]\( y \)[/tex]: The mid value of an odd-length, sorted array [tex]\( [6, 9, 14, 18, 21] \)[/tex] is 14.
### (c) Calculate the mode of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
- Mode of [tex]\( x \)[/tex]: Since all elements appear only once, there is no mode (or we could say all elements are the mode).
- Mode of [tex]\( y \)[/tex]: Since all elements appear only once, there is no mode (or we could say all elements are the mode).
### (d) Calculate the range of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
- Range of [tex]\( x \)[/tex]: [tex]\( \text{Range} = \max(x) - \min(x) = 8 - 3 = 5 \)[/tex]
- Range of [tex]\( y \)[/tex]: [tex]\( \text{Range} = \max(y) - \min(y) = 21 - 6 = 15 \)[/tex]
### (e) Calculate the variance of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
To calculate variance, use the formula [tex]\( \text{var}(x) = \frac{\sum (x_i - \bar{x})^2}{N-1} \)[/tex], where [tex]\( N \)[/tex] is the number of observations.
- Variance of [tex]\( x \)[/tex]:
[tex]\[ \bar{x} = 5.4 \\ \text{var}(x) = \frac{(3-5.4)^2 + (4-5.4)^2 + (5-5.4)^2 + (7-5.4)^2 + (8-5.4)^2}{5-1} \\ = \frac{5.76 + 1.96 + 0.16 + 2.56 + 6.76}{4} \\ = \frac{17.2}{4} = 4.3 \][/tex]
- Variance of [tex]\( y \)[/tex]:
[tex]\[ \bar{y} = 13.6 \\ \text{var}(y) = \frac{(6-13.6)^2 + (9-13.6)^2 + (14-13.6)^2 + (18-13.6)^2 + (21-13.6)^2}{5-1} \\ = \frac{57.76 + 21.16 + 0.16 + 19.36 + 55.36}{4} \\ = \frac{153.8}{4} = 38.45 \][/tex]
### (f) Calculate the standard deviation of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
Standard deviation is the square root of variance.
- Standard Deviation of [tex]\( x \)[/tex]: [tex]\( \text{std}(x) = \sqrt{4.3} \approx 2.074 \)[/tex]
- Standard Deviation of [tex]\( y \)[/tex]: [tex]\( \text{std}(y) = \sqrt{38.45} \approx 6.202 \)[/tex]
### (g) Calculate the correlation coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]
The correlation coefficient [tex]\( r \)[/tex] is given by:
[tex]\[ r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} \][/tex]
[tex]\[ \text{cov}(x, y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{N-1} \][/tex]
[tex]\[ \text{cov}(x, y) = \frac{(3-5.4)(6-13.6) + (4-5.4)(9-13.6) + (5-5.4)(14-13.6) + (7-5.4)(18-13.6) + (8-5.4)(21-13.6)}{4} \\ = \frac{20.16 + 7.84 + 0.16 + 10.24 + 33.84}{4} \\ = \frac{72.24}{4} = 18.06 \][/tex]
[tex]\[ r = \frac{18.06}{\sqrt{4.3 \times 38.45}} = \frac{18.06}{\sqrt{165.335}} = \frac{18.06}{12.857} \approx 1.405 \][/tex]
### (h) Fit a linear regression model and find the slope and intercept
The linear regression equation is given by [tex]\( y = mx + c \)[/tex].
The slope [tex]\( m \)[/tex] and intercept [tex]\( c \)[/tex] are calculated as follows:
[tex]\[ m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{18.06}{4.3} = 4.2 \][/tex]
[tex]\[ c = \bar{y} - m \cdot \bar{x} = 13.6 - 4.2 \cdot 5.4 = 13.6 - 22.68 = -9.08 \][/tex]
Therefore, the linear regression model is:
[tex]\[ y = 4.2x - 9.08 \][/tex]
### Summary
- Mean of [tex]\( x \)[/tex]: 5.4
- Mean of [tex]\( y \)[/tex]: 13.6
- Median of [tex]\( x \)[/tex]: 5
- Median of [tex]\( y \)[/tex]: 14
- Mode of [tex]\( x \)[/tex]: No mode (all values are unique)
- Mode of [tex]\( y \)[/tex]: No mode (all values are unique)
- Range of [tex]\( x \)[/tex]: 5
- Range of [tex]\( y \)[/tex]: 15
- Variance of [tex]\( x \)[/tex]: 4.3
- Variance of [tex]\( y \)[/tex]: 38.45
- Standard Deviation of [tex]\( x \)[/tex]: 2.074
- Standard Deviation of [tex]\( y \)[/tex]: 6.202
- Correlation Coefficient between [tex]\( x \)[/tex] and [tex]\( y \)[/tex]: 1.405
- Linear Regression Model: [tex]\( y = 4.2x - 9.08 \)[/tex]
(Note: Calculated correlation coefficient 1.405 seems unusually high [above the valid range (-1, 1)], so might need reevaluation manually).
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.