Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure, let's go through the process of modeling the hours of daylight with the information provided.
Given data:
- The number of hours of daylight on the summer solstice: [tex]\( y_{\text{summer solstice}} = 15.3 \)[/tex]
- The number of hours of daylight on the winter solstice: [tex]\( y_{\text{winter solstice}} = 9.1 \)[/tex]
- The period of the cycle: [tex]\( T = 365 \)[/tex] days
- The day of the year for the summer solstice: [tex]\( x_{\text{summer solstice}} = 172 \)[/tex]
- The day of the year for the winter solstice: [tex]\( x_{\text{winter solstice}} = 355 \)[/tex]
To create a function [tex]\( y = a \cos\left( \omega (x - \phi) \right) + D \)[/tex] that models the daylight hours, we need to determine:
1. The vertical shift ([tex]\( D \)[/tex]).
2. The amplitude ([tex]\( A \)[/tex]).
3. The angular frequency ([tex]\( \omega \)[/tex]).
4. The phase shift ([tex]\( \phi \)[/tex]).
Step-by-step solution:
1. Vertical Shift ([tex]\( D \)[/tex]):
The vertical shift is the average of the maximum and minimum values of the function.
[tex]\[ D = \frac{y_{\text{summer solstice}} + y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ D = \frac{15.3 + 9.1}{2} = 12.2 \][/tex]
2. Amplitude ([tex]\( A \)[/tex]):
The amplitude is half the difference between the maximum and minimum values of the function.
[tex]\[ A = \frac{y_{\text{summer solstice}} - y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ A = \frac{15.3 - 9.1}{2} = 3.1 \][/tex]
3. Angular Frequency ([tex]\( \omega \)[/tex]):
The angular frequency is related to the period of the function.
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
Given the period [tex]\( T = 365 \)[/tex] days:
[tex]\[ \omega = \frac{2\pi}{365} \approx 0.017214 \][/tex]
4. Phase Shift ([tex]\( \phi \)[/tex]):
The maximum value occurs at [tex]\( x = 172 \)[/tex] (the summer solstice). In a cosine function, this corresponds to [tex]\( \cos(0) = 1 \)[/tex], so we need to solve for [tex]\( \phi \)[/tex] when [tex]\( x = 172 \)[/tex].
[tex]\[ \omega (x_{\text{summer solstice}} - \phi) = 0 \][/tex]
Therefore:
[tex]\[ 0.017214 \times (172 - \phi) = 0 \][/tex]
Hence:
[tex]\[ \phi = 172 \][/tex]
Putting it all together, our function [tex]\( y = A \cos(\omega (x - \phi)) + D \)[/tex] becomes:
[tex]\[ y = 3.1 \cos \left( \frac{2\pi}{365} (x - 172) \right) + 12.2 \][/tex]
Given data:
- The number of hours of daylight on the summer solstice: [tex]\( y_{\text{summer solstice}} = 15.3 \)[/tex]
- The number of hours of daylight on the winter solstice: [tex]\( y_{\text{winter solstice}} = 9.1 \)[/tex]
- The period of the cycle: [tex]\( T = 365 \)[/tex] days
- The day of the year for the summer solstice: [tex]\( x_{\text{summer solstice}} = 172 \)[/tex]
- The day of the year for the winter solstice: [tex]\( x_{\text{winter solstice}} = 355 \)[/tex]
To create a function [tex]\( y = a \cos\left( \omega (x - \phi) \right) + D \)[/tex] that models the daylight hours, we need to determine:
1. The vertical shift ([tex]\( D \)[/tex]).
2. The amplitude ([tex]\( A \)[/tex]).
3. The angular frequency ([tex]\( \omega \)[/tex]).
4. The phase shift ([tex]\( \phi \)[/tex]).
Step-by-step solution:
1. Vertical Shift ([tex]\( D \)[/tex]):
The vertical shift is the average of the maximum and minimum values of the function.
[tex]\[ D = \frac{y_{\text{summer solstice}} + y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ D = \frac{15.3 + 9.1}{2} = 12.2 \][/tex]
2. Amplitude ([tex]\( A \)[/tex]):
The amplitude is half the difference between the maximum and minimum values of the function.
[tex]\[ A = \frac{y_{\text{summer solstice}} - y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ A = \frac{15.3 - 9.1}{2} = 3.1 \][/tex]
3. Angular Frequency ([tex]\( \omega \)[/tex]):
The angular frequency is related to the period of the function.
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
Given the period [tex]\( T = 365 \)[/tex] days:
[tex]\[ \omega = \frac{2\pi}{365} \approx 0.017214 \][/tex]
4. Phase Shift ([tex]\( \phi \)[/tex]):
The maximum value occurs at [tex]\( x = 172 \)[/tex] (the summer solstice). In a cosine function, this corresponds to [tex]\( \cos(0) = 1 \)[/tex], so we need to solve for [tex]\( \phi \)[/tex] when [tex]\( x = 172 \)[/tex].
[tex]\[ \omega (x_{\text{summer solstice}} - \phi) = 0 \][/tex]
Therefore:
[tex]\[ 0.017214 \times (172 - \phi) = 0 \][/tex]
Hence:
[tex]\[ \phi = 172 \][/tex]
Putting it all together, our function [tex]\( y = A \cos(\omega (x - \phi)) + D \)[/tex] becomes:
[tex]\[ y = 3.1 \cos \left( \frac{2\pi}{365} (x - 172) \right) + 12.2 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.