Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's go through the process of modeling the hours of daylight with the information provided.
Given data:
- The number of hours of daylight on the summer solstice: [tex]\( y_{\text{summer solstice}} = 15.3 \)[/tex]
- The number of hours of daylight on the winter solstice: [tex]\( y_{\text{winter solstice}} = 9.1 \)[/tex]
- The period of the cycle: [tex]\( T = 365 \)[/tex] days
- The day of the year for the summer solstice: [tex]\( x_{\text{summer solstice}} = 172 \)[/tex]
- The day of the year for the winter solstice: [tex]\( x_{\text{winter solstice}} = 355 \)[/tex]
To create a function [tex]\( y = a \cos\left( \omega (x - \phi) \right) + D \)[/tex] that models the daylight hours, we need to determine:
1. The vertical shift ([tex]\( D \)[/tex]).
2. The amplitude ([tex]\( A \)[/tex]).
3. The angular frequency ([tex]\( \omega \)[/tex]).
4. The phase shift ([tex]\( \phi \)[/tex]).
Step-by-step solution:
1. Vertical Shift ([tex]\( D \)[/tex]):
The vertical shift is the average of the maximum and minimum values of the function.
[tex]\[ D = \frac{y_{\text{summer solstice}} + y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ D = \frac{15.3 + 9.1}{2} = 12.2 \][/tex]
2. Amplitude ([tex]\( A \)[/tex]):
The amplitude is half the difference between the maximum and minimum values of the function.
[tex]\[ A = \frac{y_{\text{summer solstice}} - y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ A = \frac{15.3 - 9.1}{2} = 3.1 \][/tex]
3. Angular Frequency ([tex]\( \omega \)[/tex]):
The angular frequency is related to the period of the function.
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
Given the period [tex]\( T = 365 \)[/tex] days:
[tex]\[ \omega = \frac{2\pi}{365} \approx 0.017214 \][/tex]
4. Phase Shift ([tex]\( \phi \)[/tex]):
The maximum value occurs at [tex]\( x = 172 \)[/tex] (the summer solstice). In a cosine function, this corresponds to [tex]\( \cos(0) = 1 \)[/tex], so we need to solve for [tex]\( \phi \)[/tex] when [tex]\( x = 172 \)[/tex].
[tex]\[ \omega (x_{\text{summer solstice}} - \phi) = 0 \][/tex]
Therefore:
[tex]\[ 0.017214 \times (172 - \phi) = 0 \][/tex]
Hence:
[tex]\[ \phi = 172 \][/tex]
Putting it all together, our function [tex]\( y = A \cos(\omega (x - \phi)) + D \)[/tex] becomes:
[tex]\[ y = 3.1 \cos \left( \frac{2\pi}{365} (x - 172) \right) + 12.2 \][/tex]
Given data:
- The number of hours of daylight on the summer solstice: [tex]\( y_{\text{summer solstice}} = 15.3 \)[/tex]
- The number of hours of daylight on the winter solstice: [tex]\( y_{\text{winter solstice}} = 9.1 \)[/tex]
- The period of the cycle: [tex]\( T = 365 \)[/tex] days
- The day of the year for the summer solstice: [tex]\( x_{\text{summer solstice}} = 172 \)[/tex]
- The day of the year for the winter solstice: [tex]\( x_{\text{winter solstice}} = 355 \)[/tex]
To create a function [tex]\( y = a \cos\left( \omega (x - \phi) \right) + D \)[/tex] that models the daylight hours, we need to determine:
1. The vertical shift ([tex]\( D \)[/tex]).
2. The amplitude ([tex]\( A \)[/tex]).
3. The angular frequency ([tex]\( \omega \)[/tex]).
4. The phase shift ([tex]\( \phi \)[/tex]).
Step-by-step solution:
1. Vertical Shift ([tex]\( D \)[/tex]):
The vertical shift is the average of the maximum and minimum values of the function.
[tex]\[ D = \frac{y_{\text{summer solstice}} + y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ D = \frac{15.3 + 9.1}{2} = 12.2 \][/tex]
2. Amplitude ([tex]\( A \)[/tex]):
The amplitude is half the difference between the maximum and minimum values of the function.
[tex]\[ A = \frac{y_{\text{summer solstice}} - y_{\text{winter solstice}}}{2} \][/tex]
Given the values:
[tex]\[ A = \frac{15.3 - 9.1}{2} = 3.1 \][/tex]
3. Angular Frequency ([tex]\( \omega \)[/tex]):
The angular frequency is related to the period of the function.
[tex]\[ \omega = \frac{2\pi}{T} \][/tex]
Given the period [tex]\( T = 365 \)[/tex] days:
[tex]\[ \omega = \frac{2\pi}{365} \approx 0.017214 \][/tex]
4. Phase Shift ([tex]\( \phi \)[/tex]):
The maximum value occurs at [tex]\( x = 172 \)[/tex] (the summer solstice). In a cosine function, this corresponds to [tex]\( \cos(0) = 1 \)[/tex], so we need to solve for [tex]\( \phi \)[/tex] when [tex]\( x = 172 \)[/tex].
[tex]\[ \omega (x_{\text{summer solstice}} - \phi) = 0 \][/tex]
Therefore:
[tex]\[ 0.017214 \times (172 - \phi) = 0 \][/tex]
Hence:
[tex]\[ \phi = 172 \][/tex]
Putting it all together, our function [tex]\( y = A \cos(\omega (x - \phi)) + D \)[/tex] becomes:
[tex]\[ y = 3.1 \cos \left( \frac{2\pi}{365} (x - 172) \right) + 12.2 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.