Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the speed of sound in air at a temperature of [tex]\( 113^\circ \text{F} \)[/tex], we need to follow a step-by-step process that involves converting temperatures and using known relationships for the speed of sound. Here's the detailed solution:
1. Convert temperature from Fahrenheit to Celsius:
[tex]\[ \text{Temperature in }^\circ \text{C} = (\text{Temperature in }^\circ \text{F} - 32) \times \frac{5}{9} \][/tex]
Plugging in [tex]\( 113^\circ \text{F} \)[/tex]:
[tex]\[ 113^\circ \text{F} - 32 = 81 \][/tex]
Then,
[tex]\[ 81 \times \frac{5}{9} = 45^\circ \text{C} \][/tex]
So, the temperature in Celsius is [tex]\( 45^\circ \text{C} \)[/tex].
2. Convert the temperature from Celsius to Kelvin:
The relationship between Celsius and Kelvin is:
[tex]\[ \text{Temperature in } K = \text{Temperature in }^\circ \text{C} + 273 \][/tex]
For [tex]\( 45^\circ \text{C} \)[/tex]:
[tex]\[ 45 + 273 = 318 \text{ K} \][/tex]
Therefore, the temperature in Kelvin is 318 K.
3. Calculate the speed of sound at the given temperature:
The speed of sound in air increases with temperature. At [tex]\( 0^\circ \text{C} \)[/tex], the speed of sound is [tex]\( 331 \text{ m/s} \)[/tex]. The speed of sound [tex]\( v \)[/tex] at temperature [tex]\( T \)[/tex] in Kelvin compared to its speed at [tex]\( T_0 \)[/tex] in Kelvin (standard temperature, which is 273 K) can be found using the formula:
[tex]\[ v = v_0 \times \left( \frac{T}{T_0} \right)^{0.5} \][/tex]
where [tex]\( v_0 \)[/tex] is the speed of sound at [tex]\( 0^\circ \text{C} \)[/tex] or 273 K. Given [tex]\( v_0 = 331 \text{ m/s} \)[/tex], [tex]\( T = 318 \text{ K} \)[/tex], and [tex]\( T_0 = 273 \text{ K} \)[/tex]:
[tex]\[ v = 331 \times \left( \frac{318}{273} \right)^{0.5} \][/tex]
[tex]\[ \frac{318}{273} \approx 1.165 \][/tex]
[tex]\[ \left( 1.165 \right)^{0.5} \approx 1.079 \][/tex]
[tex]\[ v = 331 \times 1.079 \approx 357.24 \text{ m/s} \][/tex]
Therefore, the speed of sound in air at a temperature of [tex]\( 113^\circ \text{F} \)[/tex] is approximately [tex]\( 357.24 \text{ m/s} \)[/tex].
1. Convert temperature from Fahrenheit to Celsius:
[tex]\[ \text{Temperature in }^\circ \text{C} = (\text{Temperature in }^\circ \text{F} - 32) \times \frac{5}{9} \][/tex]
Plugging in [tex]\( 113^\circ \text{F} \)[/tex]:
[tex]\[ 113^\circ \text{F} - 32 = 81 \][/tex]
Then,
[tex]\[ 81 \times \frac{5}{9} = 45^\circ \text{C} \][/tex]
So, the temperature in Celsius is [tex]\( 45^\circ \text{C} \)[/tex].
2. Convert the temperature from Celsius to Kelvin:
The relationship between Celsius and Kelvin is:
[tex]\[ \text{Temperature in } K = \text{Temperature in }^\circ \text{C} + 273 \][/tex]
For [tex]\( 45^\circ \text{C} \)[/tex]:
[tex]\[ 45 + 273 = 318 \text{ K} \][/tex]
Therefore, the temperature in Kelvin is 318 K.
3. Calculate the speed of sound at the given temperature:
The speed of sound in air increases with temperature. At [tex]\( 0^\circ \text{C} \)[/tex], the speed of sound is [tex]\( 331 \text{ m/s} \)[/tex]. The speed of sound [tex]\( v \)[/tex] at temperature [tex]\( T \)[/tex] in Kelvin compared to its speed at [tex]\( T_0 \)[/tex] in Kelvin (standard temperature, which is 273 K) can be found using the formula:
[tex]\[ v = v_0 \times \left( \frac{T}{T_0} \right)^{0.5} \][/tex]
where [tex]\( v_0 \)[/tex] is the speed of sound at [tex]\( 0^\circ \text{C} \)[/tex] or 273 K. Given [tex]\( v_0 = 331 \text{ m/s} \)[/tex], [tex]\( T = 318 \text{ K} \)[/tex], and [tex]\( T_0 = 273 \text{ K} \)[/tex]:
[tex]\[ v = 331 \times \left( \frac{318}{273} \right)^{0.5} \][/tex]
[tex]\[ \frac{318}{273} \approx 1.165 \][/tex]
[tex]\[ \left( 1.165 \right)^{0.5} \approx 1.079 \][/tex]
[tex]\[ v = 331 \times 1.079 \approx 357.24 \text{ m/s} \][/tex]
Therefore, the speed of sound in air at a temperature of [tex]\( 113^\circ \text{F} \)[/tex] is approximately [tex]\( 357.24 \text{ m/s} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.