Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the roots of the equation [tex]\( x^2 + 2x - 5 = 0 \)[/tex], we need to solve it step-by-step. We will use the quadratic formula:
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
In this quadratic equation, the coefficients are:
[tex]\[ a = 1, \quad b = 2, \quad c = -5 \][/tex]
First, we calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = 2^2 - 4 \cdot 1 \cdot (-5) \][/tex]
[tex]\[ \Delta = 4 + 20 \][/tex]
[tex]\[ \Delta = 24 \][/tex]
Now, we will use the discriminant to find the roots using the quadratic formula:
[tex]\[ x = \frac{{-2 \pm \sqrt{24}}}{2 \cdot 1} \][/tex]
We know that [tex]\(\sqrt{24} = 2\sqrt{6}\)[/tex]. Therefore, substituting it back into the equation gives:
[tex]\[ x = \frac{{-2 \pm 2\sqrt{6}}}{2} \][/tex]
We can simplify the expression:
[tex]\[ x = \frac{{-2}}{2} \pm \frac{{2\sqrt{6}}}{2} \][/tex]
[tex]\[ x = -1 \pm \sqrt{6} \][/tex]
Thus, the roots of the equation [tex]\( x^2 + 2x - 5 = 0 \)[/tex] are:
[tex]\[ x = -1 + \sqrt{6} \quad \text{and} \quad x = -1 - \sqrt{6} \][/tex]
So, the correct answers are:
C. [tex]\(x = -1 + \sqrt{6}\)[/tex]
B. [tex]\(x = -1 - \sqrt{6}\)[/tex]
[tex]\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \][/tex]
In this quadratic equation, the coefficients are:
[tex]\[ a = 1, \quad b = 2, \quad c = -5 \][/tex]
First, we calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
[tex]\[ \Delta = 2^2 - 4 \cdot 1 \cdot (-5) \][/tex]
[tex]\[ \Delta = 4 + 20 \][/tex]
[tex]\[ \Delta = 24 \][/tex]
Now, we will use the discriminant to find the roots using the quadratic formula:
[tex]\[ x = \frac{{-2 \pm \sqrt{24}}}{2 \cdot 1} \][/tex]
We know that [tex]\(\sqrt{24} = 2\sqrt{6}\)[/tex]. Therefore, substituting it back into the equation gives:
[tex]\[ x = \frac{{-2 \pm 2\sqrt{6}}}{2} \][/tex]
We can simplify the expression:
[tex]\[ x = \frac{{-2}}{2} \pm \frac{{2\sqrt{6}}}{2} \][/tex]
[tex]\[ x = -1 \pm \sqrt{6} \][/tex]
Thus, the roots of the equation [tex]\( x^2 + 2x - 5 = 0 \)[/tex] are:
[tex]\[ x = -1 + \sqrt{6} \quad \text{and} \quad x = -1 - \sqrt{6} \][/tex]
So, the correct answers are:
C. [tex]\(x = -1 + \sqrt{6}\)[/tex]
B. [tex]\(x = -1 - \sqrt{6}\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.