Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve for the constants [tex]\( A \)[/tex] and [tex]\( B \)[/tex] that make the function [tex]\( f(x) \)[/tex] continuous for all [tex]\( x \)[/tex], we need to ensure that the function's values and limits match at the point where the pieces come together, specifically at [tex]\( x = 1 \)[/tex].
1. Left-hand limit as [tex]\( x \)[/tex] approaches 1:
The expression for [tex]\( f(x) \)[/tex] when [tex]\( x < 1 \)[/tex] is [tex]\( A x^2 + 5 x - 9 \)[/tex].
We need to find the limit of this expression as [tex]\( x \)[/tex] approaches 1 from the left:
[tex]\[ \lim_{x \to 1^-} (A x^2 + 5 x - 9) \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ A(1)^2 + 5(1) - 9 = A + 5 - 9 = A - 4 \][/tex]
Hence, the left-hand limit as [tex]\( x \)[/tex] approaches 1 is:
[tex]\[ \lim_{x \to 1^-} f(x) = A - 4 \][/tex]
2. Right-hand limit as [tex]\( x \)[/tex] approaches 1:
The expression for [tex]\( f(x) \)[/tex] when [tex]\( x > 1 \)[/tex] is [tex]\((3-x)(A-2x)\)[/tex].
We need to find the limit of this expression as [tex]\( x \)[/tex] approaches 1 from the right:
[tex]\[ \lim_{x \to 1^+} (3 - x)(A - 2x) \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ (3 - 1)(A - 2(1)) = 2(A - 2) = 2A - 4 \][/tex]
Hence, the right-hand limit as [tex]\( x \)[/tex] approaches 1 is:
[tex]\[ \lim_{x \to 1^+} f(x) = 2A - 4 \][/tex]
3. Continuity at [tex]\( x = 1 \)[/tex]:
For [tex]\( f(x) \)[/tex] to be continuous at [tex]\( x = 1 \)[/tex], the left-hand limit and right-hand limit must be equal to the value of the function at [tex]\( x = 1 \)[/tex], which is [tex]\( B \)[/tex]:
[tex]\[ \lim_{x \to 1^-} f(x) = f(1) = \lim_{x \to 1^+} f(x) = B \][/tex]
This gives us two equations:
[tex]\[ A - 4 = B \][/tex]
[tex]\[ 2A - 4 = B \][/tex]
4. Solving the system of equations:
We solve these two equations simultaneously. Let's start with the first equation:
[tex]\[ B = A - 4 \][/tex]
Substitute [tex]\( B = A - 4 \)[/tex] into the second equation:
[tex]\[ 2A - 4 = A - 4 \][/tex]
Simplify to solve for [tex]\( A \)[/tex]:
[tex]\[ 2A - 4 = A - 4 \][/tex]
[tex]\[ 2A - A = -4 + 4 \][/tex]
[tex]\[ A = 0 \][/tex]
5. Find [tex]\( B \)[/tex]:
Using [tex]\( A = 0 \)[/tex] in the equation [tex]\( B = A - 4 \)[/tex]:
[tex]\[ B = 0 - 4 = -4 \][/tex]
Therefore, the values of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] that make the function [tex]\( f(x) \)[/tex] continuous for all [tex]\( x \)[/tex] are:
[tex]\[ A = 0 \][/tex]
[tex]\[ B = -4 \][/tex]
These values ensure that the function is continuous at [tex]\( x = 1 \)[/tex].
1. Left-hand limit as [tex]\( x \)[/tex] approaches 1:
The expression for [tex]\( f(x) \)[/tex] when [tex]\( x < 1 \)[/tex] is [tex]\( A x^2 + 5 x - 9 \)[/tex].
We need to find the limit of this expression as [tex]\( x \)[/tex] approaches 1 from the left:
[tex]\[ \lim_{x \to 1^-} (A x^2 + 5 x - 9) \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ A(1)^2 + 5(1) - 9 = A + 5 - 9 = A - 4 \][/tex]
Hence, the left-hand limit as [tex]\( x \)[/tex] approaches 1 is:
[tex]\[ \lim_{x \to 1^-} f(x) = A - 4 \][/tex]
2. Right-hand limit as [tex]\( x \)[/tex] approaches 1:
The expression for [tex]\( f(x) \)[/tex] when [tex]\( x > 1 \)[/tex] is [tex]\((3-x)(A-2x)\)[/tex].
We need to find the limit of this expression as [tex]\( x \)[/tex] approaches 1 from the right:
[tex]\[ \lim_{x \to 1^+} (3 - x)(A - 2x) \][/tex]
Substituting [tex]\( x = 1 \)[/tex]:
[tex]\[ (3 - 1)(A - 2(1)) = 2(A - 2) = 2A - 4 \][/tex]
Hence, the right-hand limit as [tex]\( x \)[/tex] approaches 1 is:
[tex]\[ \lim_{x \to 1^+} f(x) = 2A - 4 \][/tex]
3. Continuity at [tex]\( x = 1 \)[/tex]:
For [tex]\( f(x) \)[/tex] to be continuous at [tex]\( x = 1 \)[/tex], the left-hand limit and right-hand limit must be equal to the value of the function at [tex]\( x = 1 \)[/tex], which is [tex]\( B \)[/tex]:
[tex]\[ \lim_{x \to 1^-} f(x) = f(1) = \lim_{x \to 1^+} f(x) = B \][/tex]
This gives us two equations:
[tex]\[ A - 4 = B \][/tex]
[tex]\[ 2A - 4 = B \][/tex]
4. Solving the system of equations:
We solve these two equations simultaneously. Let's start with the first equation:
[tex]\[ B = A - 4 \][/tex]
Substitute [tex]\( B = A - 4 \)[/tex] into the second equation:
[tex]\[ 2A - 4 = A - 4 \][/tex]
Simplify to solve for [tex]\( A \)[/tex]:
[tex]\[ 2A - 4 = A - 4 \][/tex]
[tex]\[ 2A - A = -4 + 4 \][/tex]
[tex]\[ A = 0 \][/tex]
5. Find [tex]\( B \)[/tex]:
Using [tex]\( A = 0 \)[/tex] in the equation [tex]\( B = A - 4 \)[/tex]:
[tex]\[ B = 0 - 4 = -4 \][/tex]
Therefore, the values of [tex]\( A \)[/tex] and [tex]\( B \)[/tex] that make the function [tex]\( f(x) \)[/tex] continuous for all [tex]\( x \)[/tex] are:
[tex]\[ A = 0 \][/tex]
[tex]\[ B = -4 \][/tex]
These values ensure that the function is continuous at [tex]\( x = 1 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.