Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the roots of the quadratic equation [tex]\(2x^2 + 11x + 15 = 0\)[/tex], we will use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients of the quadratic equation are:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 11\)[/tex]
- [tex]\(c = 15\)[/tex]
First, we need to calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 11^2 - 4 \cdot 2 \cdot 15 = 121 - 120 = 1 \][/tex]
Since the discriminant is a positive number, the quadratic equation has two real and distinct roots. Next, we use the quadratic formula to find the roots:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substitute the values of [tex]\(b\)[/tex], [tex]\( \Delta \)[/tex], and [tex]\(a\)[/tex]:
[tex]\[ x = \frac{-(11) \pm \sqrt{1}}{2 \cdot 2} = \frac{-11 \pm 1}{4} \][/tex]
This gives us two possible solutions:
1. Root 1:
[tex]\[ x = \frac{-11 + 1}{4} = \frac{-10}{4} = -2.5 \][/tex]
2. Root 2:
[tex]\[ x = \frac{-11 - 1}{4} = \frac{-12}{4} = -3 \][/tex]
Now, let's compare these roots with the available choices:
A. [tex]\(x = -6\)[/tex]
B. [tex]\(x = -3\)[/tex]
C. [tex]\(x = -5\)[/tex]
D. [tex]\(x = -\frac{5}{2}\)[/tex]
The roots we found are [tex]\(x = -2.5\)[/tex] and [tex]\(x = -3\)[/tex], which correspond to the choices:
B. [tex]\(x = -3\)[/tex]
D. [tex]\(x = -\frac{5}{2}\)[/tex] (which is the same as [tex]\(x = -2.5\)[/tex])
Therefore, the correct answers are:
[tex]\[ \boxed{x = -3 \text{ and } x = -\frac{5}{2}} \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, the coefficients of the quadratic equation are:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 11\)[/tex]
- [tex]\(c = 15\)[/tex]
First, we need to calculate the discriminant, [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[ \Delta = 11^2 - 4 \cdot 2 \cdot 15 = 121 - 120 = 1 \][/tex]
Since the discriminant is a positive number, the quadratic equation has two real and distinct roots. Next, we use the quadratic formula to find the roots:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substitute the values of [tex]\(b\)[/tex], [tex]\( \Delta \)[/tex], and [tex]\(a\)[/tex]:
[tex]\[ x = \frac{-(11) \pm \sqrt{1}}{2 \cdot 2} = \frac{-11 \pm 1}{4} \][/tex]
This gives us two possible solutions:
1. Root 1:
[tex]\[ x = \frac{-11 + 1}{4} = \frac{-10}{4} = -2.5 \][/tex]
2. Root 2:
[tex]\[ x = \frac{-11 - 1}{4} = \frac{-12}{4} = -3 \][/tex]
Now, let's compare these roots with the available choices:
A. [tex]\(x = -6\)[/tex]
B. [tex]\(x = -3\)[/tex]
C. [tex]\(x = -5\)[/tex]
D. [tex]\(x = -\frac{5}{2}\)[/tex]
The roots we found are [tex]\(x = -2.5\)[/tex] and [tex]\(x = -3\)[/tex], which correspond to the choices:
B. [tex]\(x = -3\)[/tex]
D. [tex]\(x = -\frac{5}{2}\)[/tex] (which is the same as [tex]\(x = -2.5\)[/tex])
Therefore, the correct answers are:
[tex]\[ \boxed{x = -3 \text{ and } x = -\frac{5}{2}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.