Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's work through the problem step-by-step to determine the petrol consumption [tex]\( c \)[/tex] for David's journey, taking into account the significant figures.
### Step 1: Determine the Range of [tex]\( d \)[/tex] and [tex]\( p \)[/tex]
David's distance [tex]\( d \)[/tex] is reported as 187 km (correct to 3 significant figures). This means that:
1. The lower bound for [tex]\( d \)[/tex] is [tex]\( 186.5 \)[/tex] km.
2. The upper bound for [tex]\( d \)[/tex] is [tex]\( 187.5 \)[/tex] km.
The petrol used [tex]\( p \)[/tex] is reported as 28 litres (correct to 2 significant figures). This means that:
1. The lower bound for [tex]\( p \)[/tex] is [tex]\( 27.5 \)[/tex] litres.
2. The upper bound for [tex]\( p \)[/tex] is [tex]\( 28.5 \)[/tex] litres.
### Step 2: Calculate the Boundaries for [tex]\( c \)[/tex]
The petrol consumption [tex]\( c \)[/tex] is given by [tex]\( \frac{d}{p} \)[/tex].
1. Lower bound of [tex]\( c \)[/tex]:
Use the lower bound of [tex]\( d \)[/tex] and upper bound of [tex]\( p \)[/tex]:
[tex]\[ c_{\text{lower}} = \frac{186.5}{28.5} \approx 6.543859649 \][/tex]
2. Upper bound of [tex]\( c \)[/tex]:
Use the upper bound of [tex]\( d \)[/tex] and lower bound of [tex]\( p \)[/tex]:
[tex]\[ c_{\text{upper}} = \frac{187.5}{27.5} \approx 6.818181818 \][/tex]
### Step 3: Calculate the Average Value for [tex]\( c \)[/tex]
Using the average values of [tex]\( d \)[/tex] and [tex]\( p \)[/tex]:
[tex]\[ c_{\text{average}} = \frac{d}{p} = \frac{187}{28} \approx 6.678571429 \][/tex]
### Step 4: Determine the Final Answer with Reasoning
Given the bounds:
- The lower bound of [tex]\( c \)[/tex] is approximately [tex]\( 6.543859649 \)[/tex] km/litre.
- The upper bound of [tex]\( c \)[/tex] is approximately [tex]\( 6.818181818 \)[/tex] km/litre.
Since the values of [tex]\( d \)[/tex] and [tex]\( p \)[/tex] are to 3 and 2 significant figures respectively, it is reasonable to report the consumption [tex]\( c \)[/tex] to an appropriate degree of precision, which should also be to 3 significant figures given the context.
Thus, the petrol consumption [tex]\( c \)[/tex] for David’s journey, rounded to three significant figures, is:
[tex]\[ c \approx 6.68 \, \text{km/litre} \][/tex]
This solution is based on considering the significant figures and the calculated values for [tex]\( c \)[/tex] and justifies that [tex]\( 6.68 \, \text{km/litre} \)[/tex] is an appropriate representation of the average petrol consumption.
### Step 1: Determine the Range of [tex]\( d \)[/tex] and [tex]\( p \)[/tex]
David's distance [tex]\( d \)[/tex] is reported as 187 km (correct to 3 significant figures). This means that:
1. The lower bound for [tex]\( d \)[/tex] is [tex]\( 186.5 \)[/tex] km.
2. The upper bound for [tex]\( d \)[/tex] is [tex]\( 187.5 \)[/tex] km.
The petrol used [tex]\( p \)[/tex] is reported as 28 litres (correct to 2 significant figures). This means that:
1. The lower bound for [tex]\( p \)[/tex] is [tex]\( 27.5 \)[/tex] litres.
2. The upper bound for [tex]\( p \)[/tex] is [tex]\( 28.5 \)[/tex] litres.
### Step 2: Calculate the Boundaries for [tex]\( c \)[/tex]
The petrol consumption [tex]\( c \)[/tex] is given by [tex]\( \frac{d}{p} \)[/tex].
1. Lower bound of [tex]\( c \)[/tex]:
Use the lower bound of [tex]\( d \)[/tex] and upper bound of [tex]\( p \)[/tex]:
[tex]\[ c_{\text{lower}} = \frac{186.5}{28.5} \approx 6.543859649 \][/tex]
2. Upper bound of [tex]\( c \)[/tex]:
Use the upper bound of [tex]\( d \)[/tex] and lower bound of [tex]\( p \)[/tex]:
[tex]\[ c_{\text{upper}} = \frac{187.5}{27.5} \approx 6.818181818 \][/tex]
### Step 3: Calculate the Average Value for [tex]\( c \)[/tex]
Using the average values of [tex]\( d \)[/tex] and [tex]\( p \)[/tex]:
[tex]\[ c_{\text{average}} = \frac{d}{p} = \frac{187}{28} \approx 6.678571429 \][/tex]
### Step 4: Determine the Final Answer with Reasoning
Given the bounds:
- The lower bound of [tex]\( c \)[/tex] is approximately [tex]\( 6.543859649 \)[/tex] km/litre.
- The upper bound of [tex]\( c \)[/tex] is approximately [tex]\( 6.818181818 \)[/tex] km/litre.
Since the values of [tex]\( d \)[/tex] and [tex]\( p \)[/tex] are to 3 and 2 significant figures respectively, it is reasonable to report the consumption [tex]\( c \)[/tex] to an appropriate degree of precision, which should also be to 3 significant figures given the context.
Thus, the petrol consumption [tex]\( c \)[/tex] for David’s journey, rounded to three significant figures, is:
[tex]\[ c \approx 6.68 \, \text{km/litre} \][/tex]
This solution is based on considering the significant figures and the calculated values for [tex]\( c \)[/tex] and justifies that [tex]\( 6.68 \, \text{km/litre} \)[/tex] is an appropriate representation of the average petrol consumption.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.