Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure! Let's break down the genetic cross results for the given scenarios:
Scenario 1:
In the first scenario, we are crossing a heterozygous male with the genotype [tex]\( Ww \)[/tex] with a homozygous recessive female with the genotype [tex]\( ww \)[/tex].
The Punnett square for this cross looks like this:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & w \\ \hline w & Ww & ww \\ \hline w & Ww & ww \\ \hline \end{array} \][/tex]
From this Punnett square, we can see the potential genotypes of the offspring:
- Two offspring are [tex]\( Ww \)[/tex] (heterozygous).
- Two offspring are [tex]\( ww \)[/tex] (homozygous recessive).
There are a total of 4 possible genotypes. Out of these, 2 are heterozygous [tex]\( Ww \)[/tex]. Therefore, the probability that an offspring will be heterozygous [tex]\( Ww \)[/tex] is:
[tex]\[ \frac{2}{4} = 0.5 \][/tex]
Thus, there is a 0.5 (or 50%) chance that the offspring will be heterozygous.
Scenario 2:
In the second scenario, we are crossing a heterozygous [tex]\( Ww \)[/tex] individual with a homozygous dominant [tex]\( WW \)[/tex] individual.
The Punnett square for this cross looks like this:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & W \\ \hline W & WW & WW \\ \hline w & Ww & Ww \\ \hline \end{array} \][/tex]
From this Punnett square, we can see the potential genotypes of the offspring:
- Two offspring are [tex]\( WW \)[/tex] (homozygous dominant).
- Two offspring are [tex]\( Ww \)[/tex] (heterozygous).
There are a total of 4 possible genotypes. None of these genotypes are homozygous recessive [tex]\( ww \)[/tex]. Thus, the probability of having a homozygous recessive [tex]\( ww \)[/tex] offspring is:
[tex]\[ 0 \][/tex]
Therefore, the probability of having a homozygous recessive offspring in this cross is 0 (or 0%).
To summarize:
1. There is a 0.5 chance that the offspring will be heterozygous in the first cross.
2. The probability of having a homozygous recessive offspring in the second cross is 0.
Scenario 1:
In the first scenario, we are crossing a heterozygous male with the genotype [tex]\( Ww \)[/tex] with a homozygous recessive female with the genotype [tex]\( ww \)[/tex].
The Punnett square for this cross looks like this:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & w \\ \hline w & Ww & ww \\ \hline w & Ww & ww \\ \hline \end{array} \][/tex]
From this Punnett square, we can see the potential genotypes of the offspring:
- Two offspring are [tex]\( Ww \)[/tex] (heterozygous).
- Two offspring are [tex]\( ww \)[/tex] (homozygous recessive).
There are a total of 4 possible genotypes. Out of these, 2 are heterozygous [tex]\( Ww \)[/tex]. Therefore, the probability that an offspring will be heterozygous [tex]\( Ww \)[/tex] is:
[tex]\[ \frac{2}{4} = 0.5 \][/tex]
Thus, there is a 0.5 (or 50%) chance that the offspring will be heterozygous.
Scenario 2:
In the second scenario, we are crossing a heterozygous [tex]\( Ww \)[/tex] individual with a homozygous dominant [tex]\( WW \)[/tex] individual.
The Punnett square for this cross looks like this:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & W \\ \hline W & WW & WW \\ \hline w & Ww & Ww \\ \hline \end{array} \][/tex]
From this Punnett square, we can see the potential genotypes of the offspring:
- Two offspring are [tex]\( WW \)[/tex] (homozygous dominant).
- Two offspring are [tex]\( Ww \)[/tex] (heterozygous).
There are a total of 4 possible genotypes. None of these genotypes are homozygous recessive [tex]\( ww \)[/tex]. Thus, the probability of having a homozygous recessive [tex]\( ww \)[/tex] offspring is:
[tex]\[ 0 \][/tex]
Therefore, the probability of having a homozygous recessive offspring in this cross is 0 (or 0%).
To summarize:
1. There is a 0.5 chance that the offspring will be heterozygous in the first cross.
2. The probability of having a homozygous recessive offspring in the second cross is 0.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.