At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure! Let's break down the genetic cross results for the given scenarios:
Scenario 1:
In the first scenario, we are crossing a heterozygous male with the genotype [tex]\( Ww \)[/tex] with a homozygous recessive female with the genotype [tex]\( ww \)[/tex].
The Punnett square for this cross looks like this:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & w \\ \hline w & Ww & ww \\ \hline w & Ww & ww \\ \hline \end{array} \][/tex]
From this Punnett square, we can see the potential genotypes of the offspring:
- Two offspring are [tex]\( Ww \)[/tex] (heterozygous).
- Two offspring are [tex]\( ww \)[/tex] (homozygous recessive).
There are a total of 4 possible genotypes. Out of these, 2 are heterozygous [tex]\( Ww \)[/tex]. Therefore, the probability that an offspring will be heterozygous [tex]\( Ww \)[/tex] is:
[tex]\[ \frac{2}{4} = 0.5 \][/tex]
Thus, there is a 0.5 (or 50%) chance that the offspring will be heterozygous.
Scenario 2:
In the second scenario, we are crossing a heterozygous [tex]\( Ww \)[/tex] individual with a homozygous dominant [tex]\( WW \)[/tex] individual.
The Punnett square for this cross looks like this:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & W \\ \hline W & WW & WW \\ \hline w & Ww & Ww \\ \hline \end{array} \][/tex]
From this Punnett square, we can see the potential genotypes of the offspring:
- Two offspring are [tex]\( WW \)[/tex] (homozygous dominant).
- Two offspring are [tex]\( Ww \)[/tex] (heterozygous).
There are a total of 4 possible genotypes. None of these genotypes are homozygous recessive [tex]\( ww \)[/tex]. Thus, the probability of having a homozygous recessive [tex]\( ww \)[/tex] offspring is:
[tex]\[ 0 \][/tex]
Therefore, the probability of having a homozygous recessive offspring in this cross is 0 (or 0%).
To summarize:
1. There is a 0.5 chance that the offspring will be heterozygous in the first cross.
2. The probability of having a homozygous recessive offspring in the second cross is 0.
Scenario 1:
In the first scenario, we are crossing a heterozygous male with the genotype [tex]\( Ww \)[/tex] with a homozygous recessive female with the genotype [tex]\( ww \)[/tex].
The Punnett square for this cross looks like this:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & w \\ \hline w & Ww & ww \\ \hline w & Ww & ww \\ \hline \end{array} \][/tex]
From this Punnett square, we can see the potential genotypes of the offspring:
- Two offspring are [tex]\( Ww \)[/tex] (heterozygous).
- Two offspring are [tex]\( ww \)[/tex] (homozygous recessive).
There are a total of 4 possible genotypes. Out of these, 2 are heterozygous [tex]\( Ww \)[/tex]. Therefore, the probability that an offspring will be heterozygous [tex]\( Ww \)[/tex] is:
[tex]\[ \frac{2}{4} = 0.5 \][/tex]
Thus, there is a 0.5 (or 50%) chance that the offspring will be heterozygous.
Scenario 2:
In the second scenario, we are crossing a heterozygous [tex]\( Ww \)[/tex] individual with a homozygous dominant [tex]\( WW \)[/tex] individual.
The Punnett square for this cross looks like this:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & W \\ \hline W & WW & WW \\ \hline w & Ww & Ww \\ \hline \end{array} \][/tex]
From this Punnett square, we can see the potential genotypes of the offspring:
- Two offspring are [tex]\( WW \)[/tex] (homozygous dominant).
- Two offspring are [tex]\( Ww \)[/tex] (heterozygous).
There are a total of 4 possible genotypes. None of these genotypes are homozygous recessive [tex]\( ww \)[/tex]. Thus, the probability of having a homozygous recessive [tex]\( ww \)[/tex] offspring is:
[tex]\[ 0 \][/tex]
Therefore, the probability of having a homozygous recessive offspring in this cross is 0 (or 0%).
To summarize:
1. There is a 0.5 chance that the offspring will be heterozygous in the first cross.
2. The probability of having a homozygous recessive offspring in the second cross is 0.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.