Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve the equation [tex]\(\frac{2x - 1}{y} = \frac{w + 2}{2z}\)[/tex] for [tex]\(w\)[/tex], follow these steps:
1. Start with the initial equation:
[tex]\[ \frac{2x - 1}{y} = \frac{w + 2}{2z} \][/tex]
2. Cross-multiply to eliminate the fractions:
[tex]\[ (2x - 1) \cdot 2z = (w + 2) \cdot y \][/tex]
3. Distribute the terms on each side:
[tex]\[ 2z \cdot (2x - 1) = y \cdot (w + 2) \][/tex]
This simplifies to:
[tex]\[ 4xz - 2z = wy + 2y \][/tex]
4. Isolate the term with [tex]\(w\)[/tex]:
[tex]\[ 4xz - 2z - 2y = wy \][/tex]
5. Subtract [tex]\(2y\)[/tex] on both sides to isolate [tex]\(wy\)[/tex]:
[tex]\[ 4xz - 2z = wy + 2y \quad \Rightarrow \quad 4xz - 2z - 2y = wy \][/tex]
6. Divide both sides by [tex]\(y\)[/tex] to solve for [tex]\(w\)[/tex]:
[tex]\[ w = \frac{4xz - 2z}{y} - 2 \][/tex]
Hence, the solution for [tex]\(w\)[/tex] in terms of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] is:
[tex]\[ w = \frac{4xz - 2z}{y} \][/tex]
And this is the final simplified form of [tex]\(w\)[/tex].
1. Start with the initial equation:
[tex]\[ \frac{2x - 1}{y} = \frac{w + 2}{2z} \][/tex]
2. Cross-multiply to eliminate the fractions:
[tex]\[ (2x - 1) \cdot 2z = (w + 2) \cdot y \][/tex]
3. Distribute the terms on each side:
[tex]\[ 2z \cdot (2x - 1) = y \cdot (w + 2) \][/tex]
This simplifies to:
[tex]\[ 4xz - 2z = wy + 2y \][/tex]
4. Isolate the term with [tex]\(w\)[/tex]:
[tex]\[ 4xz - 2z - 2y = wy \][/tex]
5. Subtract [tex]\(2y\)[/tex] on both sides to isolate [tex]\(wy\)[/tex]:
[tex]\[ 4xz - 2z = wy + 2y \quad \Rightarrow \quad 4xz - 2z - 2y = wy \][/tex]
6. Divide both sides by [tex]\(y\)[/tex] to solve for [tex]\(w\)[/tex]:
[tex]\[ w = \frac{4xz - 2z}{y} - 2 \][/tex]
Hence, the solution for [tex]\(w\)[/tex] in terms of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex] is:
[tex]\[ w = \frac{4xz - 2z}{y} \][/tex]
And this is the final simplified form of [tex]\(w\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.