Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To express the constraints given in the problem in the form of linear inequalities, we need to consider the information carefully:
1. Storage Space Constraint:
- The manufacturer has storage space for a maximum of 100 items.
- Let [tex]\( x \)[/tex] be the number of tables.
- Let [tex]\( y \)[/tex] be the number of chairs.
- Therefore, the inequality representing this constraint is:
[tex]\[ x + y \leq 100 \][/tex]
2. Investment Constraint:
- The manufacturer has [tex]$\$[/tex]10,000[tex]$ to invest. - Each table costs \$[/tex]400.
- Each chair costs \$100.
- Therefore, the total cost for [tex]\( x \)[/tex] tables and [tex]\( y \)[/tex] chairs would be [tex]\( 400x + 100y \)[/tex].
- The inequality representing this constraint is:
[tex]\[ 400x + 100y \leq 10000 \][/tex]
- This can be simplified by dividing by 100:
[tex]\[ 4x + y \leq 100 \][/tex]
3. Non-Negative Constraints:
- The number of tables and chairs cannot be negative.
- Therefore, the inequalities are:
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]
Combining all these constraints, we get the system of linear inequalities as:
[tex]\[ \begin{cases} x + y \leq 100 \\ 4x + y \leq 100 \\ x \geq 0 \\ y \geq 0 \end{cases} \][/tex]
Looking at the given options, we see that:
(a) [tex]\( x + y \leq 100, 4x + y \leq 100, x \geq 0, y \geq 0 \)[/tex]
This matches our derived system of inequalities exactly. Therefore, the correct answer is:
(a) [tex]\( x + y \leq 100, 4x + y \leq 100, x \geq 0, y \geq 0 \)[/tex]
1. Storage Space Constraint:
- The manufacturer has storage space for a maximum of 100 items.
- Let [tex]\( x \)[/tex] be the number of tables.
- Let [tex]\( y \)[/tex] be the number of chairs.
- Therefore, the inequality representing this constraint is:
[tex]\[ x + y \leq 100 \][/tex]
2. Investment Constraint:
- The manufacturer has [tex]$\$[/tex]10,000[tex]$ to invest. - Each table costs \$[/tex]400.
- Each chair costs \$100.
- Therefore, the total cost for [tex]\( x \)[/tex] tables and [tex]\( y \)[/tex] chairs would be [tex]\( 400x + 100y \)[/tex].
- The inequality representing this constraint is:
[tex]\[ 400x + 100y \leq 10000 \][/tex]
- This can be simplified by dividing by 100:
[tex]\[ 4x + y \leq 100 \][/tex]
3. Non-Negative Constraints:
- The number of tables and chairs cannot be negative.
- Therefore, the inequalities are:
[tex]\[ x \geq 0 \][/tex]
[tex]\[ y \geq 0 \][/tex]
Combining all these constraints, we get the system of linear inequalities as:
[tex]\[ \begin{cases} x + y \leq 100 \\ 4x + y \leq 100 \\ x \geq 0 \\ y \geq 0 \end{cases} \][/tex]
Looking at the given options, we see that:
(a) [tex]\( x + y \leq 100, 4x + y \leq 100, x \geq 0, y \geq 0 \)[/tex]
This matches our derived system of inequalities exactly. Therefore, the correct answer is:
(a) [tex]\( x + y \leq 100, 4x + y \leq 100, x \geq 0, y \geq 0 \)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.