Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the midpoint of a line segment with endpoints [tex]\( G(14, 3) \)[/tex] and [tex]\( H(10, -6) \)[/tex], we can use the midpoint formula. The midpoint formula is:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Here, the coordinates of [tex]\( G \)[/tex] are [tex]\( (x_1, y_1) = (14, 3) \)[/tex] and the coordinates of [tex]\( H \)[/tex] are [tex]\( (x_2, y_2) = (10, -6) \)[/tex].
1. Calculate the x-coordinate of the midpoint:
[tex]\[ \frac{x_1 + x_2}{2} = \frac{14 + 10}{2} = \frac{24}{2} = 12 \][/tex]
2. Calculate the y-coordinate of the midpoint:
[tex]\[ \frac{y_1 + y_2}{2} = \frac{3 + (-6)}{2} = \frac{3 - 6}{2} = \frac{-3}{2} = -1.5 \][/tex]
Thus, the midpoint of [tex]\(\overline{GH}\)[/tex] is:
[tex]\[ \left( 12, -1.5 \right) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\left(12, -\frac{3}{2}\right)} \][/tex]
Therefore, the answer is:
C. [tex]\(\left(12, -\frac{3}{2}\right)\)[/tex]
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Here, the coordinates of [tex]\( G \)[/tex] are [tex]\( (x_1, y_1) = (14, 3) \)[/tex] and the coordinates of [tex]\( H \)[/tex] are [tex]\( (x_2, y_2) = (10, -6) \)[/tex].
1. Calculate the x-coordinate of the midpoint:
[tex]\[ \frac{x_1 + x_2}{2} = \frac{14 + 10}{2} = \frac{24}{2} = 12 \][/tex]
2. Calculate the y-coordinate of the midpoint:
[tex]\[ \frac{y_1 + y_2}{2} = \frac{3 + (-6)}{2} = \frac{3 - 6}{2} = \frac{-3}{2} = -1.5 \][/tex]
Thus, the midpoint of [tex]\(\overline{GH}\)[/tex] is:
[tex]\[ \left( 12, -1.5 \right) \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\left(12, -\frac{3}{2}\right)} \][/tex]
Therefore, the answer is:
C. [tex]\(\left(12, -\frac{3}{2}\right)\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.