Answered

Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Solve the rational inequality [tex]\(\frac{-5}{x+10}\ \textless \ 0\)[/tex]. Express the answer in interval form.

A. [tex]\((-\infty, 10)\)[/tex]
B. [tex]\((10, \infty)\)[/tex]
C. [tex]\((-10, \infty)\)[/tex]
D. [tex]\((-\infty, -10)\)[/tex]


Sagot :

To solve the rational inequality [tex]\(\frac{-5}{x+10}<0\)[/tex], we need to determine the values of [tex]\(x\)[/tex] for which the given expression is less than zero.

Let's analyze the inequality step-by-step:

1. The expression [tex]\(\frac{-5}{x+10}\)[/tex] will be negative if and only if the denominator [tex]\((x + 10)\)[/tex] is positive, since the numerator [tex]\(-5\)[/tex] is already negative. This is because a negative numerator divided by a positive denominator results in a negative value.

2. To find when [tex]\(x + 10\)[/tex] is positive, we solve the inequality:
[tex]\[ x + 10 > 0 \][/tex]

3. Subtracting 10 from both sides, we get:
[tex]\[ x > -10 \][/tex]

Therefore, the solution to the inequality [tex]\(\frac{-5}{x+10}<0\)[/tex] is all [tex]\(x\)[/tex] such that [tex]\(x > -10\)[/tex].

In interval notation, this solution is expressed as:
[tex]\[ (-\infty, -10) \][/tex]

Thus, the correct answer is:
[tex]\[ (-\infty, -10) \][/tex]