At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the correct equation that represents Marco's savings scenario, we need to account for the following information:
- Marco's initial deposit, which is [tex]$8500. - The annual interest rate, which is 7.25%. The problem is about calculating the future value of the deposit using compound interest, which can be expressed using the compound interest formula: \[A = P \left(1 + \frac{r}{n}\right)^{nt}\] Where: - \(A\) is the future value of the investment/loan, including interest - \(P\) is the principal investment amount (the initial deposit or loan amount), which in this case is \$[/tex]8500
- [tex]\(r\)[/tex] is the annual interest rate (decimal), so 7.25% becomes 0.0725
- [tex]\(n\)[/tex] is the number of times that interest is compounded per year (assuming yearly compounding, [tex]\(n = 1\)[/tex])
- [tex]\(t\)[/tex] is the time the money is invested for in years, which is represented by [tex]\(x\)[/tex]
When interest is compounded once per year, the formula simplifies to:
[tex]\[A = P (1 + r)^t\][/tex]
Plugging in the given values:
- [tex]\(P = 8500\)[/tex]
- [tex]\(r = 0.0725\)[/tex]
- [tex]\(t = x\)[/tex] (years)
So, the equation becomes:
[tex]\[A = 8500 (1 + 0.0725)^x\][/tex]
Simplifying the expression inside the parentheses:
[tex]\[A = 8500 (1.0725)^x\][/tex]
Therefore, the equation that represents Marco's savings scenario is:
[tex]\[f(x) = 8500 \cdot 1.0725^x\][/tex]
So, the correct choice among the given options is:
[tex]\[f(x) = 8500 \cdot 1.0725^x\][/tex]
- Marco's initial deposit, which is [tex]$8500. - The annual interest rate, which is 7.25%. The problem is about calculating the future value of the deposit using compound interest, which can be expressed using the compound interest formula: \[A = P \left(1 + \frac{r}{n}\right)^{nt}\] Where: - \(A\) is the future value of the investment/loan, including interest - \(P\) is the principal investment amount (the initial deposit or loan amount), which in this case is \$[/tex]8500
- [tex]\(r\)[/tex] is the annual interest rate (decimal), so 7.25% becomes 0.0725
- [tex]\(n\)[/tex] is the number of times that interest is compounded per year (assuming yearly compounding, [tex]\(n = 1\)[/tex])
- [tex]\(t\)[/tex] is the time the money is invested for in years, which is represented by [tex]\(x\)[/tex]
When interest is compounded once per year, the formula simplifies to:
[tex]\[A = P (1 + r)^t\][/tex]
Plugging in the given values:
- [tex]\(P = 8500\)[/tex]
- [tex]\(r = 0.0725\)[/tex]
- [tex]\(t = x\)[/tex] (years)
So, the equation becomes:
[tex]\[A = 8500 (1 + 0.0725)^x\][/tex]
Simplifying the expression inside the parentheses:
[tex]\[A = 8500 (1.0725)^x\][/tex]
Therefore, the equation that represents Marco's savings scenario is:
[tex]\[f(x) = 8500 \cdot 1.0725^x\][/tex]
So, the correct choice among the given options is:
[tex]\[f(x) = 8500 \cdot 1.0725^x\][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.