Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the result of dividing [tex]\(2x^3 - 6x^2 - 19x - 5\)[/tex] by [tex]\(x - 5\)[/tex] using the long division method, follow these steps:
1. Set up the division: Write [tex]\(2x^3 - 6x^2 - 19x - 5\)[/tex] (the dividend) inside the long division symbol and [tex]\(x - 5\)[/tex] (the divisor) outside.
2. Divide the leading terms:
- Divide the leading term of the dividend ([tex]\(2x^3\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the first term of the quotient.
- [tex]\(\frac{2x^3}{x} = 2x^2\)[/tex].
3. Multiply and subtract:
- Multiply [tex]\(2x^2\)[/tex] (the first term of the quotient) by [tex]\(x - 5\)[/tex]:
[tex]\[ 2x^2 \cdot (x - 5) = 2x^3 - 10x^2. \][/tex]
- Subtract this product from the original dividend:
[tex]\[ (2x^3 - 6x^2) - (2x^3 - 10x^2) = 4x^2. \][/tex]
4. Bring down the next term: The new dividend is [tex]\(4x^2 - 19x - 5\)[/tex].
5. Repeat the process:
- Divide the leading term of the new dividend ([tex]\(4x^2\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the next term of the quotient:
[tex]\[ \frac{4x^2}{x} = 4x. \][/tex]
- Multiply [tex]\(4x\)[/tex] by [tex]\(x - 5\)[/tex]:
[tex]\[ 4x \cdot (x - 5) = 4x^2 - 20x. \][/tex]
- Subtract this product from the new dividend:
[tex]\[ (4x^2 - 19x) - (4x^2 - 20x) = x. \][/tex]
6. Bring down the next term: The new dividend is [tex]\(x - 5\)[/tex].
7. Repeat the process again:
- Divide the leading term of the new dividend ([tex]\(x\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the next term of the quotient:
[tex]\[ \frac{x}{x} = 1. \][/tex]
- Multiply [tex]\(1\)[/tex] by [tex]\(x - 5\)[/tex]:
[tex]\[ 1 \cdot (x - 5) = x - 5. \][/tex]
- Subtract this product from the new dividend:
[tex]\[ (x - 5) - (x - 5) = 0. \][/tex]
8. Final quotient and remainder:
- The quotient obtained is [tex]\(2x^2 + 4x + 1\)[/tex].
- The remainder is [tex]\(0\)[/tex].
Therefore, the result of [tex]\( \frac{2x^3 - 6x^2 - 19x - 5}{x - 5} \)[/tex] is:
[tex]\[ 2x^2 + 4x + 1 \quad \text{with a remainder of} \quad 0. \][/tex]
1. Set up the division: Write [tex]\(2x^3 - 6x^2 - 19x - 5\)[/tex] (the dividend) inside the long division symbol and [tex]\(x - 5\)[/tex] (the divisor) outside.
2. Divide the leading terms:
- Divide the leading term of the dividend ([tex]\(2x^3\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the first term of the quotient.
- [tex]\(\frac{2x^3}{x} = 2x^2\)[/tex].
3. Multiply and subtract:
- Multiply [tex]\(2x^2\)[/tex] (the first term of the quotient) by [tex]\(x - 5\)[/tex]:
[tex]\[ 2x^2 \cdot (x - 5) = 2x^3 - 10x^2. \][/tex]
- Subtract this product from the original dividend:
[tex]\[ (2x^3 - 6x^2) - (2x^3 - 10x^2) = 4x^2. \][/tex]
4. Bring down the next term: The new dividend is [tex]\(4x^2 - 19x - 5\)[/tex].
5. Repeat the process:
- Divide the leading term of the new dividend ([tex]\(4x^2\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the next term of the quotient:
[tex]\[ \frac{4x^2}{x} = 4x. \][/tex]
- Multiply [tex]\(4x\)[/tex] by [tex]\(x - 5\)[/tex]:
[tex]\[ 4x \cdot (x - 5) = 4x^2 - 20x. \][/tex]
- Subtract this product from the new dividend:
[tex]\[ (4x^2 - 19x) - (4x^2 - 20x) = x. \][/tex]
6. Bring down the next term: The new dividend is [tex]\(x - 5\)[/tex].
7. Repeat the process again:
- Divide the leading term of the new dividend ([tex]\(x\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the next term of the quotient:
[tex]\[ \frac{x}{x} = 1. \][/tex]
- Multiply [tex]\(1\)[/tex] by [tex]\(x - 5\)[/tex]:
[tex]\[ 1 \cdot (x - 5) = x - 5. \][/tex]
- Subtract this product from the new dividend:
[tex]\[ (x - 5) - (x - 5) = 0. \][/tex]
8. Final quotient and remainder:
- The quotient obtained is [tex]\(2x^2 + 4x + 1\)[/tex].
- The remainder is [tex]\(0\)[/tex].
Therefore, the result of [tex]\( \frac{2x^3 - 6x^2 - 19x - 5}{x - 5} \)[/tex] is:
[tex]\[ 2x^2 + 4x + 1 \quad \text{with a remainder of} \quad 0. \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.