Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the result of dividing [tex]\(2x^3 - 6x^2 - 19x - 5\)[/tex] by [tex]\(x - 5\)[/tex] using the long division method, follow these steps:
1. Set up the division: Write [tex]\(2x^3 - 6x^2 - 19x - 5\)[/tex] (the dividend) inside the long division symbol and [tex]\(x - 5\)[/tex] (the divisor) outside.
2. Divide the leading terms:
- Divide the leading term of the dividend ([tex]\(2x^3\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the first term of the quotient.
- [tex]\(\frac{2x^3}{x} = 2x^2\)[/tex].
3. Multiply and subtract:
- Multiply [tex]\(2x^2\)[/tex] (the first term of the quotient) by [tex]\(x - 5\)[/tex]:
[tex]\[ 2x^2 \cdot (x - 5) = 2x^3 - 10x^2. \][/tex]
- Subtract this product from the original dividend:
[tex]\[ (2x^3 - 6x^2) - (2x^3 - 10x^2) = 4x^2. \][/tex]
4. Bring down the next term: The new dividend is [tex]\(4x^2 - 19x - 5\)[/tex].
5. Repeat the process:
- Divide the leading term of the new dividend ([tex]\(4x^2\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the next term of the quotient:
[tex]\[ \frac{4x^2}{x} = 4x. \][/tex]
- Multiply [tex]\(4x\)[/tex] by [tex]\(x - 5\)[/tex]:
[tex]\[ 4x \cdot (x - 5) = 4x^2 - 20x. \][/tex]
- Subtract this product from the new dividend:
[tex]\[ (4x^2 - 19x) - (4x^2 - 20x) = x. \][/tex]
6. Bring down the next term: The new dividend is [tex]\(x - 5\)[/tex].
7. Repeat the process again:
- Divide the leading term of the new dividend ([tex]\(x\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the next term of the quotient:
[tex]\[ \frac{x}{x} = 1. \][/tex]
- Multiply [tex]\(1\)[/tex] by [tex]\(x - 5\)[/tex]:
[tex]\[ 1 \cdot (x - 5) = x - 5. \][/tex]
- Subtract this product from the new dividend:
[tex]\[ (x - 5) - (x - 5) = 0. \][/tex]
8. Final quotient and remainder:
- The quotient obtained is [tex]\(2x^2 + 4x + 1\)[/tex].
- The remainder is [tex]\(0\)[/tex].
Therefore, the result of [tex]\( \frac{2x^3 - 6x^2 - 19x - 5}{x - 5} \)[/tex] is:
[tex]\[ 2x^2 + 4x + 1 \quad \text{with a remainder of} \quad 0. \][/tex]
1. Set up the division: Write [tex]\(2x^3 - 6x^2 - 19x - 5\)[/tex] (the dividend) inside the long division symbol and [tex]\(x - 5\)[/tex] (the divisor) outside.
2. Divide the leading terms:
- Divide the leading term of the dividend ([tex]\(2x^3\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the first term of the quotient.
- [tex]\(\frac{2x^3}{x} = 2x^2\)[/tex].
3. Multiply and subtract:
- Multiply [tex]\(2x^2\)[/tex] (the first term of the quotient) by [tex]\(x - 5\)[/tex]:
[tex]\[ 2x^2 \cdot (x - 5) = 2x^3 - 10x^2. \][/tex]
- Subtract this product from the original dividend:
[tex]\[ (2x^3 - 6x^2) - (2x^3 - 10x^2) = 4x^2. \][/tex]
4. Bring down the next term: The new dividend is [tex]\(4x^2 - 19x - 5\)[/tex].
5. Repeat the process:
- Divide the leading term of the new dividend ([tex]\(4x^2\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the next term of the quotient:
[tex]\[ \frac{4x^2}{x} = 4x. \][/tex]
- Multiply [tex]\(4x\)[/tex] by [tex]\(x - 5\)[/tex]:
[tex]\[ 4x \cdot (x - 5) = 4x^2 - 20x. \][/tex]
- Subtract this product from the new dividend:
[tex]\[ (4x^2 - 19x) - (4x^2 - 20x) = x. \][/tex]
6. Bring down the next term: The new dividend is [tex]\(x - 5\)[/tex].
7. Repeat the process again:
- Divide the leading term of the new dividend ([tex]\(x\)[/tex]) by the leading term of the divisor ([tex]\(x\)[/tex]) to get the next term of the quotient:
[tex]\[ \frac{x}{x} = 1. \][/tex]
- Multiply [tex]\(1\)[/tex] by [tex]\(x - 5\)[/tex]:
[tex]\[ 1 \cdot (x - 5) = x - 5. \][/tex]
- Subtract this product from the new dividend:
[tex]\[ (x - 5) - (x - 5) = 0. \][/tex]
8. Final quotient and remainder:
- The quotient obtained is [tex]\(2x^2 + 4x + 1\)[/tex].
- The remainder is [tex]\(0\)[/tex].
Therefore, the result of [tex]\( \frac{2x^3 - 6x^2 - 19x - 5}{x - 5} \)[/tex] is:
[tex]\[ 2x^2 + 4x + 1 \quad \text{with a remainder of} \quad 0. \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.