Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the given problem, we need to multiply the two complex numbers [tex]\( (3 - 4i) \)[/tex] and [tex]\( (3 + 4i) \)[/tex].
Recall that when multiplying two complex numbers, we use the distributive property (also known as the FOIL method for binomials):
[tex]\[ (a + bi)(c + di) = ac + adi + bci + bdi^2 \][/tex]
We'll apply this method:
1. [tex]\( 3 \times 3 \)[/tex] which gives [tex]\( 9 \)[/tex].
2. [tex]\( 3 \times 4i \)[/tex] which gives [tex]\( 12i \)[/tex].
3. [tex]\( -4i \times 3 \)[/tex] which gives [tex]\( -12i \)[/tex].
4. [tex]\( -4i \times 4i \)[/tex] which gives [tex]\( -16i^2 \)[/tex].
Combine the real and imaginary parts:
[tex]\[ (3 - 4i)(3 + 4i) = 9 + 12i - 12i - 16i^2 \][/tex]
Notice that the imaginary parts [tex]\( 12i \)[/tex] and [tex]\( -12i \)[/tex] cancel each other out:
[tex]\[ 9 + 12i - 12i - 16i^2 = 9 - 16i^2 \][/tex]
Recall that [tex]\( i^2 = -1 \)[/tex]:
[tex]\[ 9 - 16(-1) = 9 + 16 \][/tex]
Adding these together gives:
[tex]\[ 25 \][/tex]
So, the product of [tex]\( (3 - 4i) \)[/tex] and [tex]\( (3 + 4i) \)[/tex] is [tex]\( 25 + 0i \)[/tex].
The correct answer is:
[tex]\[ 25 + 0i \][/tex]
Recall that when multiplying two complex numbers, we use the distributive property (also known as the FOIL method for binomials):
[tex]\[ (a + bi)(c + di) = ac + adi + bci + bdi^2 \][/tex]
We'll apply this method:
1. [tex]\( 3 \times 3 \)[/tex] which gives [tex]\( 9 \)[/tex].
2. [tex]\( 3 \times 4i \)[/tex] which gives [tex]\( 12i \)[/tex].
3. [tex]\( -4i \times 3 \)[/tex] which gives [tex]\( -12i \)[/tex].
4. [tex]\( -4i \times 4i \)[/tex] which gives [tex]\( -16i^2 \)[/tex].
Combine the real and imaginary parts:
[tex]\[ (3 - 4i)(3 + 4i) = 9 + 12i - 12i - 16i^2 \][/tex]
Notice that the imaginary parts [tex]\( 12i \)[/tex] and [tex]\( -12i \)[/tex] cancel each other out:
[tex]\[ 9 + 12i - 12i - 16i^2 = 9 - 16i^2 \][/tex]
Recall that [tex]\( i^2 = -1 \)[/tex]:
[tex]\[ 9 - 16(-1) = 9 + 16 \][/tex]
Adding these together gives:
[tex]\[ 25 \][/tex]
So, the product of [tex]\( (3 - 4i) \)[/tex] and [tex]\( (3 + 4i) \)[/tex] is [tex]\( 25 + 0i \)[/tex].
The correct answer is:
[tex]\[ 25 + 0i \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.