Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the mean of the given frequency distribution, we follow these steps:
1. Determine the midpoints of each temperature interval:
Each temperature interval is given as:
[tex]\(40-44\)[/tex]
[tex]\(45-49\)[/tex]
[tex]\(50-54\)[/tex]
[tex]\(55-59\)[/tex]
* [tex]\(60-64\)[/tex]
The midpoints are calculated by averaging the endpoints of each interval. Therefore:
[tex]\[ \begin{align*} \text{Midpoint of } 40-44 &: \frac{40 + 44}{2} = 42 \\ \text{Midpoint of } 45-49 &: \frac{45 + 49}{2} = 47 \\ \text{Midpoint of } 50-54 &: \frac{50 + 54}{2} = 52 \\ \text{Midpoint of } 55-59 &: \frac{55 + 59}{2} = 57 \\ \text{Midpoint of } 60-64 &: \frac{60 + 64}{2} = 62 \\ \end{align*} \][/tex]
2. List the frequencies corresponding to each interval:
The given frequencies are:
[tex]\( f_1 = 1 \)[/tex] for [tex]\(40-44\)[/tex]
[tex]\( f_2 = 4 \)[/tex] for [tex]\(45-49\)[/tex]
[tex]\( f_3 = 9 \)[/tex] for [tex]\(50-54\)[/tex]
[tex]\( f_4 = 7 \)[/tex] for [tex]\(55-59\)[/tex]
* [tex]\( f_5 = 1 \)[/tex] for [tex]\(60-64\)[/tex]
3. Compute the product of each midpoint and its corresponding frequency:
[tex]\[ \begin{align*} 42 \times 1 &= 42 \\ 47 \times 4 &= 188 \\ 52 \times 9 &= 468 \\ 57 \times 7 &= 399 \\ 62 \times 1 &= 62 \\ \end{align*} \][/tex]
4. Sum the frequencies and sum the products of midpoints and frequencies:
The sum of frequencies ([tex]\(\Sigma f\)[/tex]) is:
[tex]\[ 1 + 4 + 9 + 7 + 1 = 22 \][/tex]
The sum of the products ([tex]\(\Sigma (f \cdot x)\)[/tex]) is:
[tex]\[ 42 + 188 + 468 + 399 + 62 = 1159 \][/tex]
5. Calculate the mean ([tex]\(\mu\)[/tex]) using the formula for the mean of grouped data:
[tex]\[ \text{Mean} = \frac{\Sigma (f \cdot x)}{\Sigma f} = \frac{1159}{22} \approx 52.68 \][/tex]
6. Round the mean to the nearest tenth:
[tex]\[ \text{Mean} \approx 52.7 \][/tex]
So, the mean of the frequency distribution is [tex]\( 52.7 \)[/tex] degrees.
Comparing this computed mean to the actual mean of 52.8 degrees, the values are very close, showing that the calculation is accurate.
Thus, the mean of the frequency distribution is
[tex]\[ \boxed{52.7} \text{ degrees (rounded to the nearest tenth).} \][/tex]
1. Determine the midpoints of each temperature interval:
Each temperature interval is given as:
[tex]\(40-44\)[/tex]
[tex]\(45-49\)[/tex]
[tex]\(50-54\)[/tex]
[tex]\(55-59\)[/tex]
* [tex]\(60-64\)[/tex]
The midpoints are calculated by averaging the endpoints of each interval. Therefore:
[tex]\[ \begin{align*} \text{Midpoint of } 40-44 &: \frac{40 + 44}{2} = 42 \\ \text{Midpoint of } 45-49 &: \frac{45 + 49}{2} = 47 \\ \text{Midpoint of } 50-54 &: \frac{50 + 54}{2} = 52 \\ \text{Midpoint of } 55-59 &: \frac{55 + 59}{2} = 57 \\ \text{Midpoint of } 60-64 &: \frac{60 + 64}{2} = 62 \\ \end{align*} \][/tex]
2. List the frequencies corresponding to each interval:
The given frequencies are:
[tex]\( f_1 = 1 \)[/tex] for [tex]\(40-44\)[/tex]
[tex]\( f_2 = 4 \)[/tex] for [tex]\(45-49\)[/tex]
[tex]\( f_3 = 9 \)[/tex] for [tex]\(50-54\)[/tex]
[tex]\( f_4 = 7 \)[/tex] for [tex]\(55-59\)[/tex]
* [tex]\( f_5 = 1 \)[/tex] for [tex]\(60-64\)[/tex]
3. Compute the product of each midpoint and its corresponding frequency:
[tex]\[ \begin{align*} 42 \times 1 &= 42 \\ 47 \times 4 &= 188 \\ 52 \times 9 &= 468 \\ 57 \times 7 &= 399 \\ 62 \times 1 &= 62 \\ \end{align*} \][/tex]
4. Sum the frequencies and sum the products of midpoints and frequencies:
The sum of frequencies ([tex]\(\Sigma f\)[/tex]) is:
[tex]\[ 1 + 4 + 9 + 7 + 1 = 22 \][/tex]
The sum of the products ([tex]\(\Sigma (f \cdot x)\)[/tex]) is:
[tex]\[ 42 + 188 + 468 + 399 + 62 = 1159 \][/tex]
5. Calculate the mean ([tex]\(\mu\)[/tex]) using the formula for the mean of grouped data:
[tex]\[ \text{Mean} = \frac{\Sigma (f \cdot x)}{\Sigma f} = \frac{1159}{22} \approx 52.68 \][/tex]
6. Round the mean to the nearest tenth:
[tex]\[ \text{Mean} \approx 52.7 \][/tex]
So, the mean of the frequency distribution is [tex]\( 52.7 \)[/tex] degrees.
Comparing this computed mean to the actual mean of 52.8 degrees, the values are very close, showing that the calculation is accurate.
Thus, the mean of the frequency distribution is
[tex]\[ \boxed{52.7} \text{ degrees (rounded to the nearest tenth).} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.