Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's solve the given problem step-by-step:
### 1. Transforming Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex]
Consider the given equations:
[tex]\[ A: \quad 4x + 2 = 6 - x \][/tex]
[tex]\[ B: \quad 5x + 2 = 6 \][/tex]
We need to determine how to transform Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex].
Starting from Equation [tex]\(A\)[/tex]:
[tex]\[ 4x + 2 = 6 - x \][/tex]
Add [tex]\(x\)[/tex] to both sides to combine the [tex]\(x\)[/tex] terms:
[tex]\[ 4x + x + 2 = 6 - x + x \][/tex]
This simplifies to:
[tex]\[ 5x + 2 = 6 \][/tex]
Therefore, to transform Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex], we need to add the same quantity (which is [tex]\(x\)[/tex]) to both sides.
So, the correct answer to how we transform Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex] is:
[tex]\[ \text{(B) Add/subtract the same quantity to/from both sides} \][/tex]
### 2. Checking if Equations are Equivalent
Next, we need to determine whether the two equations are equivalent, meaning they have the same solution.
We solve both equations:
#### Solving Equation [tex]\(A\)[/tex]:
[tex]\[ 4x + 2 = 6 - x \][/tex]
Add [tex]\(x\)[/tex] to both sides:
[tex]\[ 4x + x + 2 = 6 \][/tex]
[tex]\[ 5x + 2 = 6 \][/tex]
Subtract 2 from both sides:
[tex]\[ 5x = 4 \][/tex]
Divide by 5:
[tex]\[ x = \frac{4}{5} \][/tex]
#### Solving Equation [tex]\(B\)[/tex]:
[tex]\[ 5x + 2 = 6 \][/tex]
Subtract 2 from both sides:
[tex]\[ 5x = 4 \][/tex]
Divide by 5:
[tex]\[ x = \frac{4}{5} \][/tex]
Since both equations lead to the same solution ([tex]\( x = \frac{4}{5} \)[/tex]), the equations are equivalent.
So, the correct answer to whether the equations are equivalent is:
[tex]\[ \text{(A) Yes} \][/tex]
### Final Answers:
1) How can we get Equation [tex]\(B\)[/tex] from Equation [tex]\(A\)[/tex]?
[tex]\[ \text{(B) Add/subtract the same quantity to/from both sides} \][/tex]
2) Based on the previous answer, are the equations equivalent?
[tex]\[ \text{(A) Yes} \][/tex]
### 1. Transforming Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex]
Consider the given equations:
[tex]\[ A: \quad 4x + 2 = 6 - x \][/tex]
[tex]\[ B: \quad 5x + 2 = 6 \][/tex]
We need to determine how to transform Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex].
Starting from Equation [tex]\(A\)[/tex]:
[tex]\[ 4x + 2 = 6 - x \][/tex]
Add [tex]\(x\)[/tex] to both sides to combine the [tex]\(x\)[/tex] terms:
[tex]\[ 4x + x + 2 = 6 - x + x \][/tex]
This simplifies to:
[tex]\[ 5x + 2 = 6 \][/tex]
Therefore, to transform Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex], we need to add the same quantity (which is [tex]\(x\)[/tex]) to both sides.
So, the correct answer to how we transform Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex] is:
[tex]\[ \text{(B) Add/subtract the same quantity to/from both sides} \][/tex]
### 2. Checking if Equations are Equivalent
Next, we need to determine whether the two equations are equivalent, meaning they have the same solution.
We solve both equations:
#### Solving Equation [tex]\(A\)[/tex]:
[tex]\[ 4x + 2 = 6 - x \][/tex]
Add [tex]\(x\)[/tex] to both sides:
[tex]\[ 4x + x + 2 = 6 \][/tex]
[tex]\[ 5x + 2 = 6 \][/tex]
Subtract 2 from both sides:
[tex]\[ 5x = 4 \][/tex]
Divide by 5:
[tex]\[ x = \frac{4}{5} \][/tex]
#### Solving Equation [tex]\(B\)[/tex]:
[tex]\[ 5x + 2 = 6 \][/tex]
Subtract 2 from both sides:
[tex]\[ 5x = 4 \][/tex]
Divide by 5:
[tex]\[ x = \frac{4}{5} \][/tex]
Since both equations lead to the same solution ([tex]\( x = \frac{4}{5} \)[/tex]), the equations are equivalent.
So, the correct answer to whether the equations are equivalent is:
[tex]\[ \text{(A) Yes} \][/tex]
### Final Answers:
1) How can we get Equation [tex]\(B\)[/tex] from Equation [tex]\(A\)[/tex]?
[tex]\[ \text{(B) Add/subtract the same quantity to/from both sides} \][/tex]
2) Based on the previous answer, are the equations equivalent?
[tex]\[ \text{(A) Yes} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.