Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this problem, let's break it down step-by-step.
We know that the average number of weekly social media posts ([tex]\( P \)[/tex]) varies jointly with the poster's yearly income ([tex]\( I \)[/tex]) in thousands and inversely with their age ([tex]\( A \)[/tex]) in years. This can be expressed mathematically as:
[tex]\[ P = k \times \frac{I}{A} \][/tex]
where:
- [tex]\( P \)[/tex] is the number of posts,
- [tex]\( I \)[/tex] is the yearly income in thousands,
- [tex]\( A \)[/tex] is the age,
- [tex]\( k \)[/tex] is the proportionality constant we need to find.
Given:
- [tex]\( P = 300 \)[/tex] (the average number of weekly posts),
- [tex]\( A = 60 \)[/tex] years,
- [tex]\( I = 100 \)[/tex] (since the income is \$100,000 and we consider it in thousands, so [tex]\( 100,000/1000 = 100 \)[/tex]).
We substitute these values into the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 300 = k \times \frac{100}{60} \][/tex]
Simplify the fraction [tex]\(\frac{100}{60}\)[/tex]:
[tex]\[ \frac{100}{60} = \frac{10}{6} = \frac{5}{3} \][/tex]
So, the equation becomes:
[tex]\[ 300 = k \times \frac{5}{3} \][/tex]
To isolate [tex]\( k \)[/tex], multiply both sides of the equation by [tex]\(\frac{3}{5}\)[/tex]:
[tex]\[ 300 \times \frac{3}{5} = k \][/tex]
[tex]\[ k = 180 \][/tex]
Thus, the value of [tex]\( k \)[/tex] is 180. The correct answer is:
[tex]\[ k = 180 \][/tex]
We know that the average number of weekly social media posts ([tex]\( P \)[/tex]) varies jointly with the poster's yearly income ([tex]\( I \)[/tex]) in thousands and inversely with their age ([tex]\( A \)[/tex]) in years. This can be expressed mathematically as:
[tex]\[ P = k \times \frac{I}{A} \][/tex]
where:
- [tex]\( P \)[/tex] is the number of posts,
- [tex]\( I \)[/tex] is the yearly income in thousands,
- [tex]\( A \)[/tex] is the age,
- [tex]\( k \)[/tex] is the proportionality constant we need to find.
Given:
- [tex]\( P = 300 \)[/tex] (the average number of weekly posts),
- [tex]\( A = 60 \)[/tex] years,
- [tex]\( I = 100 \)[/tex] (since the income is \$100,000 and we consider it in thousands, so [tex]\( 100,000/1000 = 100 \)[/tex]).
We substitute these values into the equation to solve for [tex]\( k \)[/tex]:
[tex]\[ 300 = k \times \frac{100}{60} \][/tex]
Simplify the fraction [tex]\(\frac{100}{60}\)[/tex]:
[tex]\[ \frac{100}{60} = \frac{10}{6} = \frac{5}{3} \][/tex]
So, the equation becomes:
[tex]\[ 300 = k \times \frac{5}{3} \][/tex]
To isolate [tex]\( k \)[/tex], multiply both sides of the equation by [tex]\(\frac{3}{5}\)[/tex]:
[tex]\[ 300 \times \frac{3}{5} = k \][/tex]
[tex]\[ k = 180 \][/tex]
Thus, the value of [tex]\( k \)[/tex] is 180. The correct answer is:
[tex]\[ k = 180 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.