Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Factor out the GCF from the polynomial.

[tex]\(45x^3 + 81x^5 - 63x^6 + 18\)[/tex]

[tex]\(45x^3 + 81x^5 - 63x^6 + 18 =\)[/tex]

(Type your answer in factored form.)


Sagot :

To factor out the greatest common factor (GCF) from the polynomial [tex]\( 45x^3 + 81x^5 - 63x^6 + 18 \)[/tex], follow these steps:

1. Identify the GCF of the coefficients in the polynomial terms.
- The coefficients are [tex]\(45\)[/tex], [tex]\(81\)[/tex], [tex]\(63\)[/tex], and [tex]\(18\)[/tex].
- The GCF of these numbers can be found by determining the highest number that divides all of the coefficients.
- The factors of [tex]\(45\)[/tex] are [tex]\(1, 3, 5, 9, 15, 45\)[/tex].
- The factors of [tex]\(81\)[/tex] are [tex]\(1, 3, 9, 27, 81\)[/tex].
- The factors of [tex]\(63\)[/tex] are [tex]\(1, 3, 7, 9, 21, 63\)[/tex].
- The factors of [tex]\(18\)[/tex] are [tex]\(1, 2, 3, 6, 9, 18\)[/tex].
- The largest number common to all sets of factors is [tex]\(9\)[/tex].

2. Include the variable part in the GCF, if necessary.
- The variable terms are [tex]\(x^3\)[/tex], [tex]\(x^5\)[/tex], and [tex]\(x^6\)[/tex]. The constants term [tex]\(18\)[/tex] does not have a variable.
- The GCF of the variable part is the lowest power of [tex]\(x\)[/tex], which is [tex]\(x^3\)[/tex].
- However, since the constant term [tex]\(18\)[/tex] does not include [tex]\(x\)[/tex], the GCF for the variable part is considered [tex]\(1\)[/tex].

3. Factor out the GCF from the polynomial:
- The combined GCF of the entire polynomial is [tex]\(9\)[/tex].

Let's rewrite each term of the polynomial by factoring [tex]\(9\)[/tex] out:
- [tex]\(45x^3 / 9 = 5x^3\)[/tex]
- [tex]\(81x^5 / 9 = 9x^5\)[/tex]
- [tex]\(63x^6 / 9 = 7x^6\)[/tex]
- [tex]\(18 / 9 = 2\)[/tex]

Thus, factoring out the GCF [tex]\(9\)[/tex] from each term, we get:

[tex]\[ 45x^3 + 81x^5 - 63x^6 + 18 = 9(5x^3 + 9x^5 - 7x^6 + 2) \][/tex]

Since there seems to be a mistake in the signs from previous calculations, the correct factored polynomial should indeed be:

[tex]\[ 45 x^3 + 81 x^5 - 63 x^6 + 18 = -9(7x^6 - 9x^5 - 5x^3 - 2) \][/tex]

Therefore, the factored form of the polynomial is:

[tex]\[ -9(7x^6 - 9x^5 - 5x^3 - 2) \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.