Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To simplify the given radical [tex]\(\sqrt{\frac{19}{x^4}}\)[/tex], we start by separating the expressions under the square root.
[tex]\[ \sqrt{\frac{19}{x^4}} = \sqrt{19} \cdot \sqrt{\frac{1}{x^4}} \][/tex]
Next, we can simplify [tex]\(\sqrt{\frac{1}{x^4}}\)[/tex]. Recall that [tex]\(\sqrt{\frac{1}{x^4}} = \sqrt{x^{-4}}\)[/tex], which simplifies further:
[tex]\[ \sqrt{x^{-4}} = x^{-2} \][/tex]
This is because taking the square root of [tex]\(x^{-4}\)[/tex] changes the exponent from [tex]\(-4\)[/tex] to [tex]\(-2\)[/tex]. Therefore, we now have:
[tex]\[ \sqrt{\frac{19}{x^4}} = \sqrt{19} \cdot x^{-2} \][/tex]
Since [tex]\(x^{-2} = \frac{1}{x^2}\)[/tex], we can rewrite the expression as:
[tex]\[ \sqrt{19} \cdot \frac{1}{x^2} = \frac{\sqrt{19}}{x^2} \][/tex]
Hence, the simplified form of the radical [tex]\(\sqrt{\frac{19}{x^4}}\)[/tex] is:
[tex]\[ \frac{\sqrt{19}}{x^2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{\sqrt{19}}{x^2}} \][/tex]
[tex]\[ \sqrt{\frac{19}{x^4}} = \sqrt{19} \cdot \sqrt{\frac{1}{x^4}} \][/tex]
Next, we can simplify [tex]\(\sqrt{\frac{1}{x^4}}\)[/tex]. Recall that [tex]\(\sqrt{\frac{1}{x^4}} = \sqrt{x^{-4}}\)[/tex], which simplifies further:
[tex]\[ \sqrt{x^{-4}} = x^{-2} \][/tex]
This is because taking the square root of [tex]\(x^{-4}\)[/tex] changes the exponent from [tex]\(-4\)[/tex] to [tex]\(-2\)[/tex]. Therefore, we now have:
[tex]\[ \sqrt{\frac{19}{x^4}} = \sqrt{19} \cdot x^{-2} \][/tex]
Since [tex]\(x^{-2} = \frac{1}{x^2}\)[/tex], we can rewrite the expression as:
[tex]\[ \sqrt{19} \cdot \frac{1}{x^2} = \frac{\sqrt{19}}{x^2} \][/tex]
Hence, the simplified form of the radical [tex]\(\sqrt{\frac{19}{x^4}}\)[/tex] is:
[tex]\[ \frac{\sqrt{19}}{x^2} \][/tex]
So, the correct answer is:
[tex]\[ \boxed{\frac{\sqrt{19}}{x^2}} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.