Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Apply the distributive property to factor out the greatest common factor.

45e - 27f = ______

Sagot :

To factor the expression [tex]\(45e - 27f\)[/tex] using the distributive property, follow these steps:

### Step 1: Identify the Greatest Common Factor (GCF)
First, find the greatest common factor (GCF) of the coefficients 45 and 27.

- The prime factorization of 45 is [tex]\(3^2 \times 5\)[/tex].
- The prime factorization of 27 is [tex]\(3^3\)[/tex].

The common prime factor in both numbers is [tex]\(3\)[/tex], and the highest power of 3 that appears in both factorizations is [tex]\(3^2\)[/tex]. Thus, the GCF of 45 and 27 is [tex]\(3^2 = 9\)[/tex].

### Step 2: Factor Out the GCF
Next, divide each term in the expression [tex]\(45e - 27f\)[/tex] by the GCF (which is 9) and use the distributive property to factor it out.

1. Divide [tex]\(45e\)[/tex] by [tex]\(9\)[/tex]:
[tex]\[ \frac{45e}{9} = 5e \][/tex]

2. Divide [tex]\(27f\)[/tex] by [tex]\(9\)[/tex]:
[tex]\[ \frac{27f}{9} = 3f \][/tex]

### Step 3: Write the Factored Expression
Now, rewrite the original expression [tex]\(45e - 27f\)[/tex] by factoring out the GCF:
[tex]\[ 45e - 27f = 9(5e - 3f) \][/tex]

So, the factored form of the expression [tex]\(45e - 27f\)[/tex] is:
[tex]\[ 45e - 27f = 9(5e - 3f) \][/tex]

This uses the distributive property to highlight the common factor and simplify the expression.