Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

What is the greatest number of acute angles that a right triangle can contain?

A. 2
B. 3
C. 0
D. 1


Sagot :

To solve the question of determining the greatest number of acute angles in a right triangle, let's start by understanding the properties of right triangles and angles.

1. Properties of a Right Triangle:
- A right triangle contains one angle that is exactly [tex]\(90^\circ\)[/tex].
- A triangle has three angles that sum up to [tex]\(180^\circ\)[/tex].

2. Understanding Acute Angles:
- An acute angle is any angle that is less than [tex]\(90^\circ\)[/tex].

Given that one angle in a right triangle is always [tex]\(90^\circ\)[/tex], we focus on the other two angles.

3. Calculating the Other Two Angles:
- Let [tex]\(A\)[/tex] and [tex]\(B\)[/tex] be the measures of the other two angles in the right triangle.
- Since the sum of the angles in any triangle is [tex]\(180^\circ\)[/tex], we have the equation:
[tex]\[ A + B + 90^\circ = 180^\circ \][/tex]
- Simplifying the above equation:
[tex]\[ A + B = 90^\circ \][/tex]

4. Determining the Nature of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
- Both [tex]\(A\)[/tex] and [tex]\(B\)[/tex] must be less than [tex]\(90^\circ\)[/tex] to satisfy the equation [tex]\(A + B = 90^\circ\)[/tex].
- Hence, both [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are acute angles (they are less than [tex]\(90^\circ\)[/tex]).

5. Greatest Number of Acute Angles:
- Since both [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are acute and there are no other angles in the right triangle apart from the [tex]\(90^\circ\)[/tex] angle, the greatest number of acute angles in a right triangle is [tex]\(\boxed{2}\)[/tex].

Thus, the correct answer to the question is [tex]\( \text{A. 2} \)[/tex].