At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we need to first identify the slope of the given line [tex]\(3x - 8y = 12\)[/tex] and then find the equation that has the same slope, as parallel lines have the same slope.
1. Convert the given line's equation [tex]\(3x - 8y = 12\)[/tex] to the slope-intercept form [tex]\(y = mx + b\)[/tex]:
- Start by isolating [tex]\(y\)[/tex] on one side of the equation:
[tex]\[ 3x - 8y = 12 \][/tex]
- Subtract [tex]\(3x\)[/tex] from both sides:
[tex]\[ -8y = -3x + 12 \][/tex]
- Divide every term by [tex]\(-8\)[/tex] to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{3}{8}x - \frac{12}{8} \][/tex]
- Simplify the constant term:
[tex]\[ y = \frac{3}{8}x - \frac{3}{2} \][/tex]
Now, the equation is in the form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
2. Identify the slope of the given line:
The slope [tex]\(m\)[/tex] from the slope-intercept form [tex]\(y = \frac{3}{8}x - \frac{3}{2}\)[/tex] is:
[tex]\[ m = \frac{3}{8} \][/tex]
3. Examine the options to find which equation has the same slope [tex]\(\frac{3}{8}\)[/tex]:
- Option A: [tex]\(y = \frac{3}{8}x - 4\)[/tex]
- The slope is [tex]\(\frac{3}{8}\)[/tex], which matches the slope of the given line.
- Option B: [tex]\(y = -\frac{3}{8}x - 4\)[/tex]
- The slope is [tex]\(-\frac{3}{8}\)[/tex], which does not match the given slope.
- Option C: [tex]\(y = \frac{8}{3}x - 4\)[/tex]
- The slope is [tex]\(\frac{8}{3}\)[/tex], which does not match the given slope.
- Option D: [tex]\(y = -\frac{8}{3}x - 4\)[/tex]
- The slope is [tex]\(-\frac{8}{3}\)[/tex], which does not match the given slope.
4. Conclusion:
The only option with the same slope [tex]\(\frac{3}{8}\)[/tex] as the given line is [tex]\(\boxed{A}\)[/tex].
Thus, the correct equation that represents a line parallel to [tex]\(3x - 8y = 12\)[/tex] is:
[tex]\[ \boxed{y = \frac{3}{8}x - 4} \][/tex]
1. Convert the given line's equation [tex]\(3x - 8y = 12\)[/tex] to the slope-intercept form [tex]\(y = mx + b\)[/tex]:
- Start by isolating [tex]\(y\)[/tex] on one side of the equation:
[tex]\[ 3x - 8y = 12 \][/tex]
- Subtract [tex]\(3x\)[/tex] from both sides:
[tex]\[ -8y = -3x + 12 \][/tex]
- Divide every term by [tex]\(-8\)[/tex] to solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{3}{8}x - \frac{12}{8} \][/tex]
- Simplify the constant term:
[tex]\[ y = \frac{3}{8}x - \frac{3}{2} \][/tex]
Now, the equation is in the form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
2. Identify the slope of the given line:
The slope [tex]\(m\)[/tex] from the slope-intercept form [tex]\(y = \frac{3}{8}x - \frac{3}{2}\)[/tex] is:
[tex]\[ m = \frac{3}{8} \][/tex]
3. Examine the options to find which equation has the same slope [tex]\(\frac{3}{8}\)[/tex]:
- Option A: [tex]\(y = \frac{3}{8}x - 4\)[/tex]
- The slope is [tex]\(\frac{3}{8}\)[/tex], which matches the slope of the given line.
- Option B: [tex]\(y = -\frac{3}{8}x - 4\)[/tex]
- The slope is [tex]\(-\frac{3}{8}\)[/tex], which does not match the given slope.
- Option C: [tex]\(y = \frac{8}{3}x - 4\)[/tex]
- The slope is [tex]\(\frac{8}{3}\)[/tex], which does not match the given slope.
- Option D: [tex]\(y = -\frac{8}{3}x - 4\)[/tex]
- The slope is [tex]\(-\frac{8}{3}\)[/tex], which does not match the given slope.
4. Conclusion:
The only option with the same slope [tex]\(\frac{3}{8}\)[/tex] as the given line is [tex]\(\boxed{A}\)[/tex].
Thus, the correct equation that represents a line parallel to [tex]\(3x - 8y = 12\)[/tex] is:
[tex]\[ \boxed{y = \frac{3}{8}x - 4} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.