Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To simplify the expression [tex]\( 3x \sqrt[3]{648 x^4 y^8} \)[/tex], let's go through the steps methodically.
### Step 1: Simplify the Cube Root Part Inside the Parentheses
First, we need to factor the constants and the variables inside the cube root.
#### Factorizing the Constants:
648 can be broken down into its prime factors:
[tex]\[ 648 = 2^3 \times 3^4 \][/tex]
#### Factorizing the Variables:
[tex]\[ x^4 \text{ can be written as } x^3 \times x \][/tex]
[tex]\[ y^8 \text{ can be written as } y^6 \times y^2 \][/tex]
Putting it all together, we get:
[tex]\[ 648 x^4 y^8 = 2^3 \times 3^4 \times x^3 \times x \times y^6 \times y^2 \][/tex]
### Step 2: Apply the Cube Root
Next, we take the cube root of each component:
[tex]\[ \sqrt[3]{2^3 \times 3^4 \times x^3 \times x \times y^6 \times y^2} \][/tex]
[tex]\[ = 2 \times 3^{4/3} \times x \times \sqrt[3]{3} \times y^2 \times \sqrt[3]{x \times y^2} \][/tex]
### Step 3: Combine Results with the Outer Term
Now, we multiply the simplified cube root by the outer term [tex]\( 3x \)[/tex]:
[tex]\[ 3x \times (2 \times 3^{4/3} \times x \times y^2 \times \sqrt[3]{3xy^2}) \][/tex]
[tex]\[ = 3 \times 2 \times 3^{4/3} \times x^2 \times y^2 \times \sqrt[3]{3xy^2} \][/tex]
Simplify the constants:
[tex]\[ 3 \times 2 \times 3^{4/3} = 6 \times 3^{4/3} = 18 \times 3^{1/3} \][/tex]
Note that [tex]\( 3^{1/3} \)[/tex] by itself can be considered part of the cube root factor.
Putting it all together:
[tex]\[ = 18 x^2 y^2 \sqrt[3]{3xy^2} \][/tex]
### Step 4: Identify the Correct Answer
The simplified expression is:
[tex]\[ 18 x^2 y^2 \sqrt[3]{3xy^2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{D. \ 18 x^2 y^2 \sqrt[3]{3 x y^2}} \][/tex]
### Step 1: Simplify the Cube Root Part Inside the Parentheses
First, we need to factor the constants and the variables inside the cube root.
#### Factorizing the Constants:
648 can be broken down into its prime factors:
[tex]\[ 648 = 2^3 \times 3^4 \][/tex]
#### Factorizing the Variables:
[tex]\[ x^4 \text{ can be written as } x^3 \times x \][/tex]
[tex]\[ y^8 \text{ can be written as } y^6 \times y^2 \][/tex]
Putting it all together, we get:
[tex]\[ 648 x^4 y^8 = 2^3 \times 3^4 \times x^3 \times x \times y^6 \times y^2 \][/tex]
### Step 2: Apply the Cube Root
Next, we take the cube root of each component:
[tex]\[ \sqrt[3]{2^3 \times 3^4 \times x^3 \times x \times y^6 \times y^2} \][/tex]
[tex]\[ = 2 \times 3^{4/3} \times x \times \sqrt[3]{3} \times y^2 \times \sqrt[3]{x \times y^2} \][/tex]
### Step 3: Combine Results with the Outer Term
Now, we multiply the simplified cube root by the outer term [tex]\( 3x \)[/tex]:
[tex]\[ 3x \times (2 \times 3^{4/3} \times x \times y^2 \times \sqrt[3]{3xy^2}) \][/tex]
[tex]\[ = 3 \times 2 \times 3^{4/3} \times x^2 \times y^2 \times \sqrt[3]{3xy^2} \][/tex]
Simplify the constants:
[tex]\[ 3 \times 2 \times 3^{4/3} = 6 \times 3^{4/3} = 18 \times 3^{1/3} \][/tex]
Note that [tex]\( 3^{1/3} \)[/tex] by itself can be considered part of the cube root factor.
Putting it all together:
[tex]\[ = 18 x^2 y^2 \sqrt[3]{3xy^2} \][/tex]
### Step 4: Identify the Correct Answer
The simplified expression is:
[tex]\[ 18 x^2 y^2 \sqrt[3]{3xy^2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{D. \ 18 x^2 y^2 \sqrt[3]{3 x y^2}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.