Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To simplify the expression [tex]\( 3x \sqrt[3]{648 x^4 y^8} \)[/tex], let's go through the steps methodically.
### Step 1: Simplify the Cube Root Part Inside the Parentheses
First, we need to factor the constants and the variables inside the cube root.
#### Factorizing the Constants:
648 can be broken down into its prime factors:
[tex]\[ 648 = 2^3 \times 3^4 \][/tex]
#### Factorizing the Variables:
[tex]\[ x^4 \text{ can be written as } x^3 \times x \][/tex]
[tex]\[ y^8 \text{ can be written as } y^6 \times y^2 \][/tex]
Putting it all together, we get:
[tex]\[ 648 x^4 y^8 = 2^3 \times 3^4 \times x^3 \times x \times y^6 \times y^2 \][/tex]
### Step 2: Apply the Cube Root
Next, we take the cube root of each component:
[tex]\[ \sqrt[3]{2^3 \times 3^4 \times x^3 \times x \times y^6 \times y^2} \][/tex]
[tex]\[ = 2 \times 3^{4/3} \times x \times \sqrt[3]{3} \times y^2 \times \sqrt[3]{x \times y^2} \][/tex]
### Step 3: Combine Results with the Outer Term
Now, we multiply the simplified cube root by the outer term [tex]\( 3x \)[/tex]:
[tex]\[ 3x \times (2 \times 3^{4/3} \times x \times y^2 \times \sqrt[3]{3xy^2}) \][/tex]
[tex]\[ = 3 \times 2 \times 3^{4/3} \times x^2 \times y^2 \times \sqrt[3]{3xy^2} \][/tex]
Simplify the constants:
[tex]\[ 3 \times 2 \times 3^{4/3} = 6 \times 3^{4/3} = 18 \times 3^{1/3} \][/tex]
Note that [tex]\( 3^{1/3} \)[/tex] by itself can be considered part of the cube root factor.
Putting it all together:
[tex]\[ = 18 x^2 y^2 \sqrt[3]{3xy^2} \][/tex]
### Step 4: Identify the Correct Answer
The simplified expression is:
[tex]\[ 18 x^2 y^2 \sqrt[3]{3xy^2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{D. \ 18 x^2 y^2 \sqrt[3]{3 x y^2}} \][/tex]
### Step 1: Simplify the Cube Root Part Inside the Parentheses
First, we need to factor the constants and the variables inside the cube root.
#### Factorizing the Constants:
648 can be broken down into its prime factors:
[tex]\[ 648 = 2^3 \times 3^4 \][/tex]
#### Factorizing the Variables:
[tex]\[ x^4 \text{ can be written as } x^3 \times x \][/tex]
[tex]\[ y^8 \text{ can be written as } y^6 \times y^2 \][/tex]
Putting it all together, we get:
[tex]\[ 648 x^4 y^8 = 2^3 \times 3^4 \times x^3 \times x \times y^6 \times y^2 \][/tex]
### Step 2: Apply the Cube Root
Next, we take the cube root of each component:
[tex]\[ \sqrt[3]{2^3 \times 3^4 \times x^3 \times x \times y^6 \times y^2} \][/tex]
[tex]\[ = 2 \times 3^{4/3} \times x \times \sqrt[3]{3} \times y^2 \times \sqrt[3]{x \times y^2} \][/tex]
### Step 3: Combine Results with the Outer Term
Now, we multiply the simplified cube root by the outer term [tex]\( 3x \)[/tex]:
[tex]\[ 3x \times (2 \times 3^{4/3} \times x \times y^2 \times \sqrt[3]{3xy^2}) \][/tex]
[tex]\[ = 3 \times 2 \times 3^{4/3} \times x^2 \times y^2 \times \sqrt[3]{3xy^2} \][/tex]
Simplify the constants:
[tex]\[ 3 \times 2 \times 3^{4/3} = 6 \times 3^{4/3} = 18 \times 3^{1/3} \][/tex]
Note that [tex]\( 3^{1/3} \)[/tex] by itself can be considered part of the cube root factor.
Putting it all together:
[tex]\[ = 18 x^2 y^2 \sqrt[3]{3xy^2} \][/tex]
### Step 4: Identify the Correct Answer
The simplified expression is:
[tex]\[ 18 x^2 y^2 \sqrt[3]{3xy^2} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{D. \ 18 x^2 y^2 \sqrt[3]{3 x y^2}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.