Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To compute the standard deviation of the given scores, we'll follow these steps:
1. Calculate the Mean:
First, find the mean (average) of the scores.
The scores given are: 10, 12, 15, 35, 40, 43, 47, 49, 50, 55.
The mean is calculated as:
[tex]\[ \text{Mean} = \frac{\sum \text{scores}}{n} \][/tex]
Where [tex]\( n \)[/tex] is the number of scores. Here, [tex]\( n = 10 \)[/tex].
[tex]\[ \text{Sum of scores} = 10 + 12 + 15 + 35 + 40 + 43 + 47 + 49 + 50 + 55 = 356 \][/tex]
[tex]\[ \text{Mean} = \frac{356}{10} = 35.6 \][/tex]
2. Calculate the Squared Differences from the Mean:
Next, compute the squared difference between each score and the mean.
[tex]\[ \text{Squared Difference} = (\text{Score} - \text{Mean})^2 \][/tex]
We organize this in a table for clarity:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Score} & \text{Mean} & (\text{Score} - \text{Mean})^2 \\ \hline 10 & 35.6 & (10 - 35.6)^2 = 660.49 \\ 12 & 35.6 & (12 - 35.6)^2 = 556.96 \\ 15 & 35.6 & (15 - 35.6)^2 = 428.49 \\ 35 & 35.6 & (35 - 35.6)^2 = 0.36 \\ 40 & 35.6 & (40 - 35.6)^2 = 19.36 \\ 43 & 35.6 & (43 - 35.6)^2 = 54.76 \\ 47 & 35.6 & (47 - 35.6)^2 = 128.44 \\ 49 & 35.6 & (49 - 35.6)^2 = 178.56 \\ 50 & 35.6 & (50 - 35.6)^2 = 204.84 \\ 55 & 35.6 & (55 - 35.6)^2 = 380.25 \\ \hline \end{array} \][/tex]
3. Calculate the Variance:
The variance is the average of these squared differences.
[tex]\[ \text{Variance} = \frac{\sum (\text{Score} - \text{Mean})^2}{n} \][/tex]
Sum of squared differences:
[tex]\[ 660.49 + 556.96 + 428.49 + 0.36 + 19.36 + 54.76 + 128.44 + 178.56 + 204.84 + 380.25 = 2604.40 \][/tex]
[tex]\[ \text{Variance} = \frac{2604.40}{10} = 260.44 \][/tex]
4. Calculate the Standard Deviation:
The standard deviation is the square root of the variance.
[tex]\[ \text{Standard Deviation} = \sqrt{\text{Variance}} = \sqrt{260.44} \approx 16.138 \][/tex]
So, the mean of the scores is 35.6, the variance is 260.44, and the standard deviation is approximately 16.138.
1. Calculate the Mean:
First, find the mean (average) of the scores.
The scores given are: 10, 12, 15, 35, 40, 43, 47, 49, 50, 55.
The mean is calculated as:
[tex]\[ \text{Mean} = \frac{\sum \text{scores}}{n} \][/tex]
Where [tex]\( n \)[/tex] is the number of scores. Here, [tex]\( n = 10 \)[/tex].
[tex]\[ \text{Sum of scores} = 10 + 12 + 15 + 35 + 40 + 43 + 47 + 49 + 50 + 55 = 356 \][/tex]
[tex]\[ \text{Mean} = \frac{356}{10} = 35.6 \][/tex]
2. Calculate the Squared Differences from the Mean:
Next, compute the squared difference between each score and the mean.
[tex]\[ \text{Squared Difference} = (\text{Score} - \text{Mean})^2 \][/tex]
We organize this in a table for clarity:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Score} & \text{Mean} & (\text{Score} - \text{Mean})^2 \\ \hline 10 & 35.6 & (10 - 35.6)^2 = 660.49 \\ 12 & 35.6 & (12 - 35.6)^2 = 556.96 \\ 15 & 35.6 & (15 - 35.6)^2 = 428.49 \\ 35 & 35.6 & (35 - 35.6)^2 = 0.36 \\ 40 & 35.6 & (40 - 35.6)^2 = 19.36 \\ 43 & 35.6 & (43 - 35.6)^2 = 54.76 \\ 47 & 35.6 & (47 - 35.6)^2 = 128.44 \\ 49 & 35.6 & (49 - 35.6)^2 = 178.56 \\ 50 & 35.6 & (50 - 35.6)^2 = 204.84 \\ 55 & 35.6 & (55 - 35.6)^2 = 380.25 \\ \hline \end{array} \][/tex]
3. Calculate the Variance:
The variance is the average of these squared differences.
[tex]\[ \text{Variance} = \frac{\sum (\text{Score} - \text{Mean})^2}{n} \][/tex]
Sum of squared differences:
[tex]\[ 660.49 + 556.96 + 428.49 + 0.36 + 19.36 + 54.76 + 128.44 + 178.56 + 204.84 + 380.25 = 2604.40 \][/tex]
[tex]\[ \text{Variance} = \frac{2604.40}{10} = 260.44 \][/tex]
4. Calculate the Standard Deviation:
The standard deviation is the square root of the variance.
[tex]\[ \text{Standard Deviation} = \sqrt{\text{Variance}} = \sqrt{260.44} \approx 16.138 \][/tex]
So, the mean of the scores is 35.6, the variance is 260.44, and the standard deviation is approximately 16.138.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.