Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the equation for Lot A, we will start by observing the pattern in the given data.
The costs to park for different days for Lot A are as follows:
- On day 1, the cost is \[tex]$16. - On day 2, the cost is \$[/tex]20.
- On day 3, the cost is \[tex]$24. - On day 4, the cost is \$[/tex]28.
We can see that the cost increases by \[tex]$4 each additional day. To find the linear equation representing the cost \(y\) versus the number of days \(x\) for Lot A, we use the form of a linear equation: \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept. ### Step-by-Step Process 1. Determine the slope \(m\): - The slope \(m\) represents the rate of change in cost per day. - From the data, we notice the cost increases by \$[/tex]4 each day. Therefore, [tex]\(m = 4\)[/tex].
2. Determine the y-intercept [tex]\(b\)[/tex]:
- To find the y-intercept [tex]\(b\)[/tex], we use one of the points given in the data. Let's use the point (1, 16) (i.e., on day 1, the cost is \$16).
- Plugging this point into the equation [tex]\(y = mx + b\)[/tex]:
[tex]\[ 16 = 4(1) + b \\ 16 = 4 + b \\ b = 16 - 4 \\ b = 12 \][/tex]
3. Write the equation:
- Using the slope [tex]\(m = 4\)[/tex] and the y-intercept [tex]\(b = 12\)[/tex], we can write the equation for Lot A:
[tex]\[ y = 4x + 12 \][/tex]
Therefore, the other equation in the system, representing the cost to park in Lot A, is:
[tex]\[ y = 4x + 12 \][/tex]
For Lot B, we are already provided with the equation [tex]\(y = 6x\)[/tex].
Thus, the system of linear equations used to determine on which day the cost to park is the same for both lots is:
[tex]\[ \begin{cases} y = 6x \quad \text{(Lot B)} \\ y = 4x + 12 \quad \text{(Lot A)} \end{cases} \][/tex]
The costs to park for different days for Lot A are as follows:
- On day 1, the cost is \[tex]$16. - On day 2, the cost is \$[/tex]20.
- On day 3, the cost is \[tex]$24. - On day 4, the cost is \$[/tex]28.
We can see that the cost increases by \[tex]$4 each additional day. To find the linear equation representing the cost \(y\) versus the number of days \(x\) for Lot A, we use the form of a linear equation: \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept. ### Step-by-Step Process 1. Determine the slope \(m\): - The slope \(m\) represents the rate of change in cost per day. - From the data, we notice the cost increases by \$[/tex]4 each day. Therefore, [tex]\(m = 4\)[/tex].
2. Determine the y-intercept [tex]\(b\)[/tex]:
- To find the y-intercept [tex]\(b\)[/tex], we use one of the points given in the data. Let's use the point (1, 16) (i.e., on day 1, the cost is \$16).
- Plugging this point into the equation [tex]\(y = mx + b\)[/tex]:
[tex]\[ 16 = 4(1) + b \\ 16 = 4 + b \\ b = 16 - 4 \\ b = 12 \][/tex]
3. Write the equation:
- Using the slope [tex]\(m = 4\)[/tex] and the y-intercept [tex]\(b = 12\)[/tex], we can write the equation for Lot A:
[tex]\[ y = 4x + 12 \][/tex]
Therefore, the other equation in the system, representing the cost to park in Lot A, is:
[tex]\[ y = 4x + 12 \][/tex]
For Lot B, we are already provided with the equation [tex]\(y = 6x\)[/tex].
Thus, the system of linear equations used to determine on which day the cost to park is the same for both lots is:
[tex]\[ \begin{cases} y = 6x \quad \text{(Lot B)} \\ y = 4x + 12 \quad \text{(Lot A)} \end{cases} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.