At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the probabilities for the described scenarios, follow these steps:
### Step-by-Step Solution:
1. Summarize the Frequency Data:
- [tex]$\text{0-3 minutes: 9 customers}$[/tex]
- [tex]$\text{4-7 minutes: 10 customers}$[/tex]
- [tex]$\text{8-11 minutes: 12 customers}$[/tex]
- [tex]$\text{12-15 minutes: 4 customers}$[/tex]
- [tex]$\text{16-19 minutes: 4 customers}$[/tex]
- [tex]$\text{20-23 minutes: 2 customers}$[/tex]
- [tex]$\text{24-27 minutes: 2 customers}$[/tex]
2. Calculate the Total Number of Customers:
[tex]\[ \text{Total customers} = 9 + 10 + 12 + 4 + 4 + 2 + 2 = 43 \][/tex]
3. Calculate the Number of Customers Waiting at Least 12 Minutes:
- This includes customers in the intervals [tex]\(12-15\)[/tex], [tex]\(16-19\)[/tex], [tex]\(20-23\)[/tex], and [tex]\(24-27\)[/tex] minutes.
[tex]\[ \text{Customers waiting at least 12 minutes} = 4 + 4 + 2 + 2 = 12 \][/tex]
4. Calculate the Probability of Waiting at Least 12 Minutes:
[tex]\[ P(\text{waiting at least 12 minutes}) = \frac{\text{Customers waiting at least 12 minutes}}{\text{Total customers}} = \frac{12}{43} \approx 0.279 \][/tex]
5. Calculate the Number of Customers Waiting Between 8 and 15 Minutes:
- This includes customers in the intervals [tex]\(8-11\)[/tex] and [tex]\(12-15\)[/tex] minutes.
[tex]\[ \text{Customers waiting between 8 and 15 minutes} = 12 + 4 = 16 \][/tex]
6. Calculate the Probability of Waiting Between 8 and 15 Minutes:
[tex]\[ P(\text{waiting between 8 and 15 minutes}) = \frac{\text{Customers waiting between 8 and 15 minutes}}{\text{Total customers}} = \frac{16}{43} \approx 0.372 \][/tex]
7. Combine the Two Probabilities:
- These events are distinct (one is an interval within another), so probabilities can be added directly:
[tex]\[ P(\text{waiting at least 12 minutes or between 8 and 15 minutes}) = 0.279 + 0.372 \approx 0.558 \][/tex]
Therefore, the probability that a randomly selected customer waited at least 12 minutes or between 8 and 15 minutes is approximately [tex]\(0.558\)[/tex].
### Step-by-Step Solution:
1. Summarize the Frequency Data:
- [tex]$\text{0-3 minutes: 9 customers}$[/tex]
- [tex]$\text{4-7 minutes: 10 customers}$[/tex]
- [tex]$\text{8-11 minutes: 12 customers}$[/tex]
- [tex]$\text{12-15 minutes: 4 customers}$[/tex]
- [tex]$\text{16-19 minutes: 4 customers}$[/tex]
- [tex]$\text{20-23 minutes: 2 customers}$[/tex]
- [tex]$\text{24-27 minutes: 2 customers}$[/tex]
2. Calculate the Total Number of Customers:
[tex]\[ \text{Total customers} = 9 + 10 + 12 + 4 + 4 + 2 + 2 = 43 \][/tex]
3. Calculate the Number of Customers Waiting at Least 12 Minutes:
- This includes customers in the intervals [tex]\(12-15\)[/tex], [tex]\(16-19\)[/tex], [tex]\(20-23\)[/tex], and [tex]\(24-27\)[/tex] minutes.
[tex]\[ \text{Customers waiting at least 12 minutes} = 4 + 4 + 2 + 2 = 12 \][/tex]
4. Calculate the Probability of Waiting at Least 12 Minutes:
[tex]\[ P(\text{waiting at least 12 minutes}) = \frac{\text{Customers waiting at least 12 minutes}}{\text{Total customers}} = \frac{12}{43} \approx 0.279 \][/tex]
5. Calculate the Number of Customers Waiting Between 8 and 15 Minutes:
- This includes customers in the intervals [tex]\(8-11\)[/tex] and [tex]\(12-15\)[/tex] minutes.
[tex]\[ \text{Customers waiting between 8 and 15 minutes} = 12 + 4 = 16 \][/tex]
6. Calculate the Probability of Waiting Between 8 and 15 Minutes:
[tex]\[ P(\text{waiting between 8 and 15 minutes}) = \frac{\text{Customers waiting between 8 and 15 minutes}}{\text{Total customers}} = \frac{16}{43} \approx 0.372 \][/tex]
7. Combine the Two Probabilities:
- These events are distinct (one is an interval within another), so probabilities can be added directly:
[tex]\[ P(\text{waiting at least 12 minutes or between 8 and 15 minutes}) = 0.279 + 0.372 \approx 0.558 \][/tex]
Therefore, the probability that a randomly selected customer waited at least 12 minutes or between 8 and 15 minutes is approximately [tex]\(0.558\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.