Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To graph the equation [tex]\(y + 2 = \frac{1}{2}(x + 2)\)[/tex], follow these steps:
1. Convert the Equation to Slope-Intercept Form (y = mx + b):
- Start with the given equation:
[tex]\[ y + 2 = \frac{1}{2}(x + 2) \][/tex]
- Distribute the [tex]\(\frac{1}{2}\)[/tex] on the right-hand side:
[tex]\[ y + 2 = \frac{1}{2} x + 1 \][/tex]
- Subtract 2 from both sides to isolate [tex]\(y\)[/tex]:
[tex]\[ y = \frac{1}{2} x + 1 - 2 \][/tex]
- Simplify the equation:
[tex]\[ y = \frac{1}{2} x - 1 \][/tex]
2. Identify the Slope and Y-Intercept:
- The equation [tex]\(y = \frac{1}{2} x - 1\)[/tex] is now in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- The slope ([tex]\(m\)[/tex]) is [tex]\(\frac{1}{2}\)[/tex].
- The y-intercept ([tex]\(b\)[/tex]) is -1.
3. Find Points to Plot:
- When [tex]\(x = 0\)[/tex]:
- Substitute [tex]\(x = 0\)[/tex] into the equation:
[tex]\[ y = \frac{1}{2}(0) - 1 = -1 \][/tex]
- Point: [tex]\((0, -1)\)[/tex]
- When [tex]\(x = 2\)[/tex]:
- Substitute [tex]\(x = 2\)[/tex] into the equation:
[tex]\[ y = \frac{1}{2}(2) - 1 = 1 - 1 = 0 \][/tex]
- Point: [tex]\((2, 0)\)[/tex]
- When [tex]\(x = -2\)[/tex]:
- Substitute [tex]\(x = -2\)[/tex] into the equation:
[tex]\[ y = \frac{1}{2}(-2) - 1 = -1 - 1 = -2 \][/tex]
- Point: [tex]\((-2, -2)\)[/tex]
4. Plot the Points on the Graph:
- Plot the points [tex]\((0, -1)\)[/tex], [tex]\((2, 0)\)[/tex], and [tex]\((-2, -2)\)[/tex] on the coordinate plane.
5. Draw the Line:
- Connect the plotted points with a straight line, extending the line through the points.
The graph should show a straight line passing through the points [tex]\((0, -1)\)[/tex], [tex]\((2, 0)\)[/tex], and [tex]\((-2, -2)\)[/tex], with a slope of [tex]\(\frac{1}{2}\)[/tex] and a y-intercept of -1.
1. Convert the Equation to Slope-Intercept Form (y = mx + b):
- Start with the given equation:
[tex]\[ y + 2 = \frac{1}{2}(x + 2) \][/tex]
- Distribute the [tex]\(\frac{1}{2}\)[/tex] on the right-hand side:
[tex]\[ y + 2 = \frac{1}{2} x + 1 \][/tex]
- Subtract 2 from both sides to isolate [tex]\(y\)[/tex]:
[tex]\[ y = \frac{1}{2} x + 1 - 2 \][/tex]
- Simplify the equation:
[tex]\[ y = \frac{1}{2} x - 1 \][/tex]
2. Identify the Slope and Y-Intercept:
- The equation [tex]\(y = \frac{1}{2} x - 1\)[/tex] is now in slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept.
- The slope ([tex]\(m\)[/tex]) is [tex]\(\frac{1}{2}\)[/tex].
- The y-intercept ([tex]\(b\)[/tex]) is -1.
3. Find Points to Plot:
- When [tex]\(x = 0\)[/tex]:
- Substitute [tex]\(x = 0\)[/tex] into the equation:
[tex]\[ y = \frac{1}{2}(0) - 1 = -1 \][/tex]
- Point: [tex]\((0, -1)\)[/tex]
- When [tex]\(x = 2\)[/tex]:
- Substitute [tex]\(x = 2\)[/tex] into the equation:
[tex]\[ y = \frac{1}{2}(2) - 1 = 1 - 1 = 0 \][/tex]
- Point: [tex]\((2, 0)\)[/tex]
- When [tex]\(x = -2\)[/tex]:
- Substitute [tex]\(x = -2\)[/tex] into the equation:
[tex]\[ y = \frac{1}{2}(-2) - 1 = -1 - 1 = -2 \][/tex]
- Point: [tex]\((-2, -2)\)[/tex]
4. Plot the Points on the Graph:
- Plot the points [tex]\((0, -1)\)[/tex], [tex]\((2, 0)\)[/tex], and [tex]\((-2, -2)\)[/tex] on the coordinate plane.
5. Draw the Line:
- Connect the plotted points with a straight line, extending the line through the points.
The graph should show a straight line passing through the points [tex]\((0, -1)\)[/tex], [tex]\((2, 0)\)[/tex], and [tex]\((-2, -2)\)[/tex], with a slope of [tex]\(\frac{1}{2}\)[/tex] and a y-intercept of -1.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.