Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze each statement to determine which features correctly describe the graphed function.
1. The equation of the function is [tex]\( y - 100 = -\frac{2}{25}(x - 8) \)[/tex].
To check this, we rearrange the given equation into slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 100 = -\frac{2}{25}(x - 8) \][/tex]
Distribute [tex]\(-\frac{2}{25}\)[/tex]:
[tex]\[ y - 100 = -\frac{2}{25}x + \frac{16}{25} \][/tex]
Simplify to:
[tex]\[ y = -\frac{2}{25}x + 100 + \frac{16}{25} \][/tex]
Since there's an issue with the simplification, the equation won't match our possible candidates. Therefore, statement 1 is incorrect.
2. The equation of the function is [tex]\( 25x + 2y = 200 \)[/tex].
We can solve for [tex]\( y \)[/tex] to identify the equation:
[tex]\[ 2y = -25x + 200 \][/tex]
Divide by 2:
[tex]\[ y = -\frac{25}{2}x + 100 \][/tex]
This matches one of our possible candidates. Hence, statement 2 is correct.
3. The [tex]\( y \)[/tex]-intercept for the function is [tex]\( (0,120) \)[/tex].
From the correct equation [tex]\( y = -\frac{25}{2}x + 100 \)[/tex], when [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 100 \][/tex]
Therefore, the function intercepts the [tex]\( y \)[/tex]-axis at [tex]\( (0, 100) \)[/tex]. Thus, statement 3 is incorrect.
4. The [tex]\( x \)[/tex]-intercept for the function is [tex]\( (8, 0) \)[/tex].
To find the [tex]\( x \)[/tex]-intercept, set [tex]\( y = 0 \)[/tex] in the equation [tex]\( y = -\frac{25}{2}x + 100 \)[/tex]:
[tex]\[ 0 = -\frac{25}{2}x + 100 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{25}{2}x = 100 \][/tex]
Multiply both sides by [tex]\(\frac{2}{25} \)[/tex]:
[tex]\[ x = 8 \][/tex]
Therefore, the [tex]\( x \)[/tex]-intercept is indeed [tex]\( (8, 0) \)[/tex]. Statement 4 is correct.
5. The domain for the function is [tex]\([0, 12]\)[/tex].
The domain specifies the range of allowable [tex]\( x \)[/tex]-values. If the function represents the battery life during streaming, it makes logical sense to consider the domain within [tex]\( [0, 12] \)[/tex]. Hence, statement 5 is correct.
6. The equation of the function is [tex]\( y = -\frac{25}{2}x + 100 \)[/tex].
We verified this form from statement 2, so statement 6 is correct.
In summary, the correct statements are:
- The equation of the function is [tex]\( 25 x + 2 y = 200 \)[/tex].
- The [tex]\( x \)[/tex]-intercept for the function is [tex]\( (8, 0) \)[/tex].
- The domain for the function is [tex]\( [0,12] \)[/tex].
- The equation of the function is [tex]\( y = -\frac{25}{2}x + 100 \)[/tex].
1. The equation of the function is [tex]\( y - 100 = -\frac{2}{25}(x - 8) \)[/tex].
To check this, we rearrange the given equation into slope-intercept form [tex]\( y = mx + b \)[/tex]:
[tex]\[ y - 100 = -\frac{2}{25}(x - 8) \][/tex]
Distribute [tex]\(-\frac{2}{25}\)[/tex]:
[tex]\[ y - 100 = -\frac{2}{25}x + \frac{16}{25} \][/tex]
Simplify to:
[tex]\[ y = -\frac{2}{25}x + 100 + \frac{16}{25} \][/tex]
Since there's an issue with the simplification, the equation won't match our possible candidates. Therefore, statement 1 is incorrect.
2. The equation of the function is [tex]\( 25x + 2y = 200 \)[/tex].
We can solve for [tex]\( y \)[/tex] to identify the equation:
[tex]\[ 2y = -25x + 200 \][/tex]
Divide by 2:
[tex]\[ y = -\frac{25}{2}x + 100 \][/tex]
This matches one of our possible candidates. Hence, statement 2 is correct.
3. The [tex]\( y \)[/tex]-intercept for the function is [tex]\( (0,120) \)[/tex].
From the correct equation [tex]\( y = -\frac{25}{2}x + 100 \)[/tex], when [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 100 \][/tex]
Therefore, the function intercepts the [tex]\( y \)[/tex]-axis at [tex]\( (0, 100) \)[/tex]. Thus, statement 3 is incorrect.
4. The [tex]\( x \)[/tex]-intercept for the function is [tex]\( (8, 0) \)[/tex].
To find the [tex]\( x \)[/tex]-intercept, set [tex]\( y = 0 \)[/tex] in the equation [tex]\( y = -\frac{25}{2}x + 100 \)[/tex]:
[tex]\[ 0 = -\frac{25}{2}x + 100 \][/tex]
Solving for [tex]\( x \)[/tex]:
[tex]\[ \frac{25}{2}x = 100 \][/tex]
Multiply both sides by [tex]\(\frac{2}{25} \)[/tex]:
[tex]\[ x = 8 \][/tex]
Therefore, the [tex]\( x \)[/tex]-intercept is indeed [tex]\( (8, 0) \)[/tex]. Statement 4 is correct.
5. The domain for the function is [tex]\([0, 12]\)[/tex].
The domain specifies the range of allowable [tex]\( x \)[/tex]-values. If the function represents the battery life during streaming, it makes logical sense to consider the domain within [tex]\( [0, 12] \)[/tex]. Hence, statement 5 is correct.
6. The equation of the function is [tex]\( y = -\frac{25}{2}x + 100 \)[/tex].
We verified this form from statement 2, so statement 6 is correct.
In summary, the correct statements are:
- The equation of the function is [tex]\( 25 x + 2 y = 200 \)[/tex].
- The [tex]\( x \)[/tex]-intercept for the function is [tex]\( (8, 0) \)[/tex].
- The domain for the function is [tex]\( [0,12] \)[/tex].
- The equation of the function is [tex]\( y = -\frac{25}{2}x + 100 \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.