Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
a) To find the probability of rolling a total of 4 with a pair of fair dice, we first note all possible outcomes. Each die has 6 faces, so with two dice, there are 6 * 6 = 36 possible outcomes.
Next, we identify the outcomes that sum to 4. They are:
1. (1, 3)
2. (2, 2)
3. (3, 1)
Thus, there are 3 outcomes that result in a total of 4. The probability of rolling a total of 4 with two dice is the number of favorable outcomes divided by the total number of possible outcomes. In fraction form, this probability is:
[tex]\[ \frac{3}{36} = \frac{1}{12} \][/tex]
So, the probability of rolling a total of 4 is [tex]\( \frac{1}{12} \)[/tex].
b) To determine how many times you would expect to roll a total of 4 in 360 rolls of the dice, we use the probability found in part (a). The expected number of times to roll a 4 is given by:
[tex]\[ \text{Expected number of times} = \text{Probability} \times \text{Number of rolls} \][/tex]
Substituting the values we have:
[tex]\[ \text{Expected number of times} = \left( \frac{1}{12} \right) \times 360 = 30 \][/tex]
Therefore, if you roll a pair of fair dice 360 times, you would expect to roll a total of 4 approximately 30 times.
Next, we identify the outcomes that sum to 4. They are:
1. (1, 3)
2. (2, 2)
3. (3, 1)
Thus, there are 3 outcomes that result in a total of 4. The probability of rolling a total of 4 with two dice is the number of favorable outcomes divided by the total number of possible outcomes. In fraction form, this probability is:
[tex]\[ \frac{3}{36} = \frac{1}{12} \][/tex]
So, the probability of rolling a total of 4 is [tex]\( \frac{1}{12} \)[/tex].
b) To determine how many times you would expect to roll a total of 4 in 360 rolls of the dice, we use the probability found in part (a). The expected number of times to roll a 4 is given by:
[tex]\[ \text{Expected number of times} = \text{Probability} \times \text{Number of rolls} \][/tex]
Substituting the values we have:
[tex]\[ \text{Expected number of times} = \left( \frac{1}{12} \right) \times 360 = 30 \][/tex]
Therefore, if you roll a pair of fair dice 360 times, you would expect to roll a total of 4 approximately 30 times.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.