Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Of course! Let's delve into finding the wavelength of a gamma ray with a frequency of [tex]\(1.0 \times 10^{19}\)[/tex] Hz and a given speed of light [tex]\( c = 3.0 \times 10^8 \)[/tex] m/s.
The relationship between the wavelength ([tex]\(\lambda\)[/tex]), the speed of light ([tex]\(c\)[/tex]), and the frequency ([tex]\(f\)[/tex]) is given by the following equation:
[tex]\[ \lambda = \frac{c}{f} \][/tex]
Plugging in the provided values:
[tex]\[ c = 3.0 \times 10^8 \, \text{m/s} \][/tex]
[tex]\[ f = 1.0 \times 10^{19} \, \text{Hz} \][/tex]
We can now substitute these values into the equation:
[tex]\[ \lambda = \frac{3.0 \times 10^8}{1.0 \times 10^{19}} \][/tex]
Next, we simplify the division:
[tex]\[ \lambda = 3.0 \times 10^8 \, \text{m/s} \div 1.0 \times 10^{19} \, \text{Hz} \][/tex]
This division of the coefficients gives:
[tex]\[ = 3.0 \div 1.0 = 3.0 \][/tex]
And the division of the powers of ten is:
[tex]\[ 10^8 \div 10^{19} = 10^{8-19} = 10^{-11} \][/tex]
Combining these results, we have:
[tex]\[ \lambda = 3.0 \times 10^{-11} \, \text{m} \][/tex]
Thus, the wavelength of the gamma ray is:
[tex]\[ 3.0 \times 10^{-11} \, \text{m} \][/tex]
The coefficient and the exponent are:
[tex]\[ (3.0, -11) \][/tex]
So, the wavelength of the gamma ray is [tex]\(3.0 \times 10^{-11}\)[/tex] meters.
The relationship between the wavelength ([tex]\(\lambda\)[/tex]), the speed of light ([tex]\(c\)[/tex]), and the frequency ([tex]\(f\)[/tex]) is given by the following equation:
[tex]\[ \lambda = \frac{c}{f} \][/tex]
Plugging in the provided values:
[tex]\[ c = 3.0 \times 10^8 \, \text{m/s} \][/tex]
[tex]\[ f = 1.0 \times 10^{19} \, \text{Hz} \][/tex]
We can now substitute these values into the equation:
[tex]\[ \lambda = \frac{3.0 \times 10^8}{1.0 \times 10^{19}} \][/tex]
Next, we simplify the division:
[tex]\[ \lambda = 3.0 \times 10^8 \, \text{m/s} \div 1.0 \times 10^{19} \, \text{Hz} \][/tex]
This division of the coefficients gives:
[tex]\[ = 3.0 \div 1.0 = 3.0 \][/tex]
And the division of the powers of ten is:
[tex]\[ 10^8 \div 10^{19} = 10^{8-19} = 10^{-11} \][/tex]
Combining these results, we have:
[tex]\[ \lambda = 3.0 \times 10^{-11} \, \text{m} \][/tex]
Thus, the wavelength of the gamma ray is:
[tex]\[ 3.0 \times 10^{-11} \, \text{m} \][/tex]
The coefficient and the exponent are:
[tex]\[ (3.0, -11) \][/tex]
So, the wavelength of the gamma ray is [tex]\(3.0 \times 10^{-11}\)[/tex] meters.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.