Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze the given data step-by-step and calculate the required probabilities to determine which event is the least likely.
Firstly, let’s break down the data from the table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \text{Freshmen} & \text{Non-Freshmen} & \text{TOTAL} \\ \hline \text{Own skateboard} & 40 & 110 & 150 \\ \hline \begin{array}{c} \text{Does not own} \\ \text{skateboard} \end{array} & 210 & 840 & 1050 \\ \hline \text{TOTAL} & 250 & 950 & 1200 \\ \hline \end{array} \][/tex]
Given the four events, we will calculate the probability of each event occurring:
1. Probability that a randomly selected freshman owns a skateboard:
[tex]\[ P(\text{Own skateboard} | \text{Freshman}) = \frac{\text{Number of freshmen who own a skateboard}}{\text{Total number of freshmen}} = \frac{40}{250} = 0.16 \][/tex]
2. Probability that a randomly selected student who does not own a skateboard is not a freshman:
[tex]\[ P(\text{Not Freshman} | \text{Does not own skateboard}) = \frac{\text{Number of non-freshmen who do not own a skateboard}}{\text{Total number of students who do not own a skateboard}} = \frac{840}{1050} = 0.8 \][/tex]
3. Probability that a randomly selected student who owns a skateboard is a freshman:
[tex]\[ P(\text{Freshman} | \text{Owns skateboard}) = \frac{\text{Number of freshmen who own a skateboard}}{\text{Total number of students who own a skateboard}} = \frac{40}{150} = 0.267 \][/tex]
4. Probability that a randomly selected student who does not own a skateboard is a freshman:
[tex]\[ P(\text{Freshman} | \text{Does not own skateboard}) = \frac{\text{Number of freshmen who do not own a skateboard}}{\text{Total number of students who do not own a skateboard}} = \frac{210}{1050} = 0.2 \][/tex]
Now, we have the probabilities for each event:
1. [tex]\( P(\text{Own skateboard} | \text{Freshman}) = 0.16 \)[/tex]
2. [tex]\( P(\text{Not Freshman} | \text{Does not own skateboard}) = 0.8 \)[/tex]
3. [tex]\( P(\text{Freshman} | \text{Owns skateboard}) = 0.267 \)[/tex]
4. [tex]\( P(\text{Freshman} | \text{Does not own skateboard}) = 0.2 \)[/tex]
The least likely event is the one with the smallest probability. Comparing the calculated probabilities:
[tex]\[ 0.16, 0.8, 0.267, 0.2 \][/tex]
The least likely event is:
[tex]\[ P(\text{Own skateboard} | \text{Freshman}) = 0.16 \][/tex]
Therefore, the event that is the least likely is "A randomly selected student who is a freshman owns a skateboard."
Firstly, let’s break down the data from the table:
[tex]\[ \begin{array}{|c|c|c|c|} \hline & \text{Freshmen} & \text{Non-Freshmen} & \text{TOTAL} \\ \hline \text{Own skateboard} & 40 & 110 & 150 \\ \hline \begin{array}{c} \text{Does not own} \\ \text{skateboard} \end{array} & 210 & 840 & 1050 \\ \hline \text{TOTAL} & 250 & 950 & 1200 \\ \hline \end{array} \][/tex]
Given the four events, we will calculate the probability of each event occurring:
1. Probability that a randomly selected freshman owns a skateboard:
[tex]\[ P(\text{Own skateboard} | \text{Freshman}) = \frac{\text{Number of freshmen who own a skateboard}}{\text{Total number of freshmen}} = \frac{40}{250} = 0.16 \][/tex]
2. Probability that a randomly selected student who does not own a skateboard is not a freshman:
[tex]\[ P(\text{Not Freshman} | \text{Does not own skateboard}) = \frac{\text{Number of non-freshmen who do not own a skateboard}}{\text{Total number of students who do not own a skateboard}} = \frac{840}{1050} = 0.8 \][/tex]
3. Probability that a randomly selected student who owns a skateboard is a freshman:
[tex]\[ P(\text{Freshman} | \text{Owns skateboard}) = \frac{\text{Number of freshmen who own a skateboard}}{\text{Total number of students who own a skateboard}} = \frac{40}{150} = 0.267 \][/tex]
4. Probability that a randomly selected student who does not own a skateboard is a freshman:
[tex]\[ P(\text{Freshman} | \text{Does not own skateboard}) = \frac{\text{Number of freshmen who do not own a skateboard}}{\text{Total number of students who do not own a skateboard}} = \frac{210}{1050} = 0.2 \][/tex]
Now, we have the probabilities for each event:
1. [tex]\( P(\text{Own skateboard} | \text{Freshman}) = 0.16 \)[/tex]
2. [tex]\( P(\text{Not Freshman} | \text{Does not own skateboard}) = 0.8 \)[/tex]
3. [tex]\( P(\text{Freshman} | \text{Owns skateboard}) = 0.267 \)[/tex]
4. [tex]\( P(\text{Freshman} | \text{Does not own skateboard}) = 0.2 \)[/tex]
The least likely event is the one with the smallest probability. Comparing the calculated probabilities:
[tex]\[ 0.16, 0.8, 0.267, 0.2 \][/tex]
The least likely event is:
[tex]\[ P(\text{Own skateboard} | \text{Freshman}) = 0.16 \][/tex]
Therefore, the event that is the least likely is "A randomly selected student who is a freshman owns a skateboard."
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.