Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the equation of the line that is perpendicular to a given line and has a specific [tex]\( x \)[/tex]-intercept, we need to follow a few steps.
### Step 1: Understand the given equation
The given equations are:
1. [tex]\( y = -\frac{3}{4} x + 8 \)[/tex]
2. [tex]\( y = \frac{3}{4} x + 6 \)[/tex]
3. [tex]\( y = \frac{4}{3} x - 8 \)[/tex]
4. [tex]\( y = \frac{4}{3} x - 6 \)[/tex]
### Step 2: Determine the slope of the given line
The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. For each equation:
- Equation 1: [tex]\( m = -\frac{3}{4} \)[/tex]
- Equation 2: [tex]\( m = \frac{3}{4} \)[/tex]
- Equation 3: [tex]\( m = \frac{4}{3} \)[/tex]
- Equation 4: [tex]\( m = \frac{4}{3} \)[/tex]
### Step 3: Find the slope of the perpendicular line
The slope of a line that is perpendicular to another line is the negative reciprocal of the original line's slope:
- For [tex]\( m = -\frac{3}{4} \)[/tex], the perpendicular slope is [tex]\( \frac{4}{3} \)[/tex].
- For [tex]\( m = \frac{3}{4} \)[/tex], the perpendicular slope is [tex]\( -\frac{4}{3} \)[/tex].
- For [tex]\( m = \frac{4}{3} \)[/tex], the perpendicular slope is [tex]\( -\frac{3}{4} \)[/tex].
- For [tex]\( m = -\frac{4}{3} \)[/tex], the perpendicular slope is [tex]\( \frac{3}{4} \)[/tex].
### Step 4: Use the [tex]\( x \)[/tex]-intercept to find the y-intercept
Given an [tex]\( x \)[/tex]-intercept of 6, which means the line passes through the point [tex]\( (6, 0) \)[/tex].
Using the slope of [tex]\( \frac{4}{3} \)[/tex] (since the problem specifically states the perpendicular line has this slope as derived from the given line's perpendicular nature):
[tex]\[ y = mx + b \][/tex]
Substitute [tex]\( (6, 0) \)[/tex] into the equation:
[tex]\[ 0 = \frac{4}{3}(6) + b \][/tex]
[tex]\[ 0 = 8 + b \][/tex]
[tex]\[ b = -8 \][/tex]
So the y-intercept is [tex]\( -8 \)[/tex].
### Step 5: Write the equation in slope-intercept form
Now that we have both the slope and y-intercept:
[tex]\[ y = \frac{4}{3} x - 8 \][/tex]
Therefore, the correct equation is:
[tex]\[ y = \frac{4}{3} x - 8 \][/tex]
### Answer:
[tex]\[ \boxed{y = \frac{4}{3} x - 8} \][/tex]
### Step 1: Understand the given equation
The given equations are:
1. [tex]\( y = -\frac{3}{4} x + 8 \)[/tex]
2. [tex]\( y = \frac{3}{4} x + 6 \)[/tex]
3. [tex]\( y = \frac{4}{3} x - 8 \)[/tex]
4. [tex]\( y = \frac{4}{3} x - 6 \)[/tex]
### Step 2: Determine the slope of the given line
The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. For each equation:
- Equation 1: [tex]\( m = -\frac{3}{4} \)[/tex]
- Equation 2: [tex]\( m = \frac{3}{4} \)[/tex]
- Equation 3: [tex]\( m = \frac{4}{3} \)[/tex]
- Equation 4: [tex]\( m = \frac{4}{3} \)[/tex]
### Step 3: Find the slope of the perpendicular line
The slope of a line that is perpendicular to another line is the negative reciprocal of the original line's slope:
- For [tex]\( m = -\frac{3}{4} \)[/tex], the perpendicular slope is [tex]\( \frac{4}{3} \)[/tex].
- For [tex]\( m = \frac{3}{4} \)[/tex], the perpendicular slope is [tex]\( -\frac{4}{3} \)[/tex].
- For [tex]\( m = \frac{4}{3} \)[/tex], the perpendicular slope is [tex]\( -\frac{3}{4} \)[/tex].
- For [tex]\( m = -\frac{4}{3} \)[/tex], the perpendicular slope is [tex]\( \frac{3}{4} \)[/tex].
### Step 4: Use the [tex]\( x \)[/tex]-intercept to find the y-intercept
Given an [tex]\( x \)[/tex]-intercept of 6, which means the line passes through the point [tex]\( (6, 0) \)[/tex].
Using the slope of [tex]\( \frac{4}{3} \)[/tex] (since the problem specifically states the perpendicular line has this slope as derived from the given line's perpendicular nature):
[tex]\[ y = mx + b \][/tex]
Substitute [tex]\( (6, 0) \)[/tex] into the equation:
[tex]\[ 0 = \frac{4}{3}(6) + b \][/tex]
[tex]\[ 0 = 8 + b \][/tex]
[tex]\[ b = -8 \][/tex]
So the y-intercept is [tex]\( -8 \)[/tex].
### Step 5: Write the equation in slope-intercept form
Now that we have both the slope and y-intercept:
[tex]\[ y = \frac{4}{3} x - 8 \][/tex]
Therefore, the correct equation is:
[tex]\[ y = \frac{4}{3} x - 8 \][/tex]
### Answer:
[tex]\[ \boxed{y = \frac{4}{3} x - 8} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.