Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation of the line that is perpendicular to a given line and has a specific [tex]\( x \)[/tex]-intercept, we need to follow a few steps.
### Step 1: Understand the given equation
The given equations are:
1. [tex]\( y = -\frac{3}{4} x + 8 \)[/tex]
2. [tex]\( y = \frac{3}{4} x + 6 \)[/tex]
3. [tex]\( y = \frac{4}{3} x - 8 \)[/tex]
4. [tex]\( y = \frac{4}{3} x - 6 \)[/tex]
### Step 2: Determine the slope of the given line
The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. For each equation:
- Equation 1: [tex]\( m = -\frac{3}{4} \)[/tex]
- Equation 2: [tex]\( m = \frac{3}{4} \)[/tex]
- Equation 3: [tex]\( m = \frac{4}{3} \)[/tex]
- Equation 4: [tex]\( m = \frac{4}{3} \)[/tex]
### Step 3: Find the slope of the perpendicular line
The slope of a line that is perpendicular to another line is the negative reciprocal of the original line's slope:
- For [tex]\( m = -\frac{3}{4} \)[/tex], the perpendicular slope is [tex]\( \frac{4}{3} \)[/tex].
- For [tex]\( m = \frac{3}{4} \)[/tex], the perpendicular slope is [tex]\( -\frac{4}{3} \)[/tex].
- For [tex]\( m = \frac{4}{3} \)[/tex], the perpendicular slope is [tex]\( -\frac{3}{4} \)[/tex].
- For [tex]\( m = -\frac{4}{3} \)[/tex], the perpendicular slope is [tex]\( \frac{3}{4} \)[/tex].
### Step 4: Use the [tex]\( x \)[/tex]-intercept to find the y-intercept
Given an [tex]\( x \)[/tex]-intercept of 6, which means the line passes through the point [tex]\( (6, 0) \)[/tex].
Using the slope of [tex]\( \frac{4}{3} \)[/tex] (since the problem specifically states the perpendicular line has this slope as derived from the given line's perpendicular nature):
[tex]\[ y = mx + b \][/tex]
Substitute [tex]\( (6, 0) \)[/tex] into the equation:
[tex]\[ 0 = \frac{4}{3}(6) + b \][/tex]
[tex]\[ 0 = 8 + b \][/tex]
[tex]\[ b = -8 \][/tex]
So the y-intercept is [tex]\( -8 \)[/tex].
### Step 5: Write the equation in slope-intercept form
Now that we have both the slope and y-intercept:
[tex]\[ y = \frac{4}{3} x - 8 \][/tex]
Therefore, the correct equation is:
[tex]\[ y = \frac{4}{3} x - 8 \][/tex]
### Answer:
[tex]\[ \boxed{y = \frac{4}{3} x - 8} \][/tex]
### Step 1: Understand the given equation
The given equations are:
1. [tex]\( y = -\frac{3}{4} x + 8 \)[/tex]
2. [tex]\( y = \frac{3}{4} x + 6 \)[/tex]
3. [tex]\( y = \frac{4}{3} x - 8 \)[/tex]
4. [tex]\( y = \frac{4}{3} x - 6 \)[/tex]
### Step 2: Determine the slope of the given line
The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. For each equation:
- Equation 1: [tex]\( m = -\frac{3}{4} \)[/tex]
- Equation 2: [tex]\( m = \frac{3}{4} \)[/tex]
- Equation 3: [tex]\( m = \frac{4}{3} \)[/tex]
- Equation 4: [tex]\( m = \frac{4}{3} \)[/tex]
### Step 3: Find the slope of the perpendicular line
The slope of a line that is perpendicular to another line is the negative reciprocal of the original line's slope:
- For [tex]\( m = -\frac{3}{4} \)[/tex], the perpendicular slope is [tex]\( \frac{4}{3} \)[/tex].
- For [tex]\( m = \frac{3}{4} \)[/tex], the perpendicular slope is [tex]\( -\frac{4}{3} \)[/tex].
- For [tex]\( m = \frac{4}{3} \)[/tex], the perpendicular slope is [tex]\( -\frac{3}{4} \)[/tex].
- For [tex]\( m = -\frac{4}{3} \)[/tex], the perpendicular slope is [tex]\( \frac{3}{4} \)[/tex].
### Step 4: Use the [tex]\( x \)[/tex]-intercept to find the y-intercept
Given an [tex]\( x \)[/tex]-intercept of 6, which means the line passes through the point [tex]\( (6, 0) \)[/tex].
Using the slope of [tex]\( \frac{4}{3} \)[/tex] (since the problem specifically states the perpendicular line has this slope as derived from the given line's perpendicular nature):
[tex]\[ y = mx + b \][/tex]
Substitute [tex]\( (6, 0) \)[/tex] into the equation:
[tex]\[ 0 = \frac{4}{3}(6) + b \][/tex]
[tex]\[ 0 = 8 + b \][/tex]
[tex]\[ b = -8 \][/tex]
So the y-intercept is [tex]\( -8 \)[/tex].
### Step 5: Write the equation in slope-intercept form
Now that we have both the slope and y-intercept:
[tex]\[ y = \frac{4}{3} x - 8 \][/tex]
Therefore, the correct equation is:
[tex]\[ y = \frac{4}{3} x - 8 \][/tex]
### Answer:
[tex]\[ \boxed{y = \frac{4}{3} x - 8} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.