Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the equation of a line that is parallel to a given line and passes through a specific point, we need to follow these steps:
### Step 1: Identify the given line and its equation
The given line has the equation:
[tex]\[ 3x - 4y = -17 \][/tex]
### Step 2: Determine the slope of the given line
Parallel lines have the same slope. However, in this case, we'll use the general form of the line equation directly since the coefficients will be the same for parallel lines.
### Step 3: Use the general form of the equation for parallel lines
Since parallel lines have identical coefficients for [tex]\( x \)[/tex] and [tex]\( y \)[/tex], the general form of the equation for a line parallel to [tex]\( 3x - 4y = -17 \)[/tex] will be:
[tex]\[ 3x - 4y = C \][/tex]
where [tex]\( C \)[/tex] is a constant that we'll determine next.
### Step 4: Substitute the given point into the equation to find [tex]\( C \)[/tex]
We are given the point [tex]\( (-3, 2) \)[/tex]. Substitute [tex]\( x = -3 \)[/tex] and [tex]\( y = 2 \)[/tex] into the equation [tex]\( 3x - 4y = C \)[/tex]:
[tex]\[ 3(-3) - 4(2) = C \][/tex]
[tex]\[ -9 - 8 = C \][/tex]
[tex]\[ -17 = C \][/tex]
### Step 5: Write the final equation
Now that we have found [tex]\( C = -17 \)[/tex], the equation of the line parallel to [tex]\( 3x - 4y = -17 \)[/tex] and passing through the point [tex]\( (-3, 2) \)[/tex] is:
[tex]\[ 3x - 4y = -17 \][/tex]
Thus, the equation of the desired line is:
[tex]\[ 3x - 4y = -17 \][/tex]
Given the options:
1. [tex]\( 3x - 4y = -17 \)[/tex]
2. [tex]\( 3x - 4y = -20 \)[/tex]
3. [tex]\( 4x + 3y = -2 \)[/tex]
4. [tex]\( 4x + 3y = -6 \)[/tex]
The correct answer is:
[tex]\[ \boxed{3x - 4y = -17} \][/tex]
### Step 1: Identify the given line and its equation
The given line has the equation:
[tex]\[ 3x - 4y = -17 \][/tex]
### Step 2: Determine the slope of the given line
Parallel lines have the same slope. However, in this case, we'll use the general form of the line equation directly since the coefficients will be the same for parallel lines.
### Step 3: Use the general form of the equation for parallel lines
Since parallel lines have identical coefficients for [tex]\( x \)[/tex] and [tex]\( y \)[/tex], the general form of the equation for a line parallel to [tex]\( 3x - 4y = -17 \)[/tex] will be:
[tex]\[ 3x - 4y = C \][/tex]
where [tex]\( C \)[/tex] is a constant that we'll determine next.
### Step 4: Substitute the given point into the equation to find [tex]\( C \)[/tex]
We are given the point [tex]\( (-3, 2) \)[/tex]. Substitute [tex]\( x = -3 \)[/tex] and [tex]\( y = 2 \)[/tex] into the equation [tex]\( 3x - 4y = C \)[/tex]:
[tex]\[ 3(-3) - 4(2) = C \][/tex]
[tex]\[ -9 - 8 = C \][/tex]
[tex]\[ -17 = C \][/tex]
### Step 5: Write the final equation
Now that we have found [tex]\( C = -17 \)[/tex], the equation of the line parallel to [tex]\( 3x - 4y = -17 \)[/tex] and passing through the point [tex]\( (-3, 2) \)[/tex] is:
[tex]\[ 3x - 4y = -17 \][/tex]
Thus, the equation of the desired line is:
[tex]\[ 3x - 4y = -17 \][/tex]
Given the options:
1. [tex]\( 3x - 4y = -17 \)[/tex]
2. [tex]\( 3x - 4y = -20 \)[/tex]
3. [tex]\( 4x + 3y = -2 \)[/tex]
4. [tex]\( 4x + 3y = -6 \)[/tex]
The correct answer is:
[tex]\[ \boxed{3x - 4y = -17} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.