Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, you need to follow a series of steps. Let's break it down:
1. Identify the variables:
- Let the width of the rectangle be denoted as [tex]\( w \)[/tex] meters.
2. Express the length in terms of the width:
- According to the problem, the length [tex]\( l \)[/tex] is twice the width. Therefore, [tex]\( l = 2w \)[/tex].
3. Formulate the equation for the area:
- The area [tex]\( A \)[/tex] of a rectangle is calculated by multiplying its length and its width. According to the problem, the area is 128 square meters.
- Thus, [tex]\( A = l \times w \)[/tex].
- Substituting the given values, we get:
[tex]\[ 128 = 2w \times w \][/tex]
4. Solve for the width [tex]\( w \)[/tex]:
- Simplify the equation:
[tex]\[ 128 = 2w^2 \][/tex]
- Divide both sides of the equation by 2:
[tex]\[ 64 = w^2 \][/tex]
- Take the square root of both sides to find [tex]\( w \)[/tex]:
[tex]\[ w = \sqrt{64} \][/tex]
[tex]\[ w = 8 \][/tex]
5. Determine the length [tex]\( l \)[/tex]:
- Remember that the length [tex]\( l \)[/tex] is twice the width:
[tex]\[ l = 2w = 2 \times 8 = 16 \][/tex]
6. Calculate the perimeter:
- The perimeter [tex]\( P \)[/tex] of a rectangle is given by the formula:
[tex]\[ P = 2 \times (l + w) \][/tex]
- Substitute the values of [tex]\( l \)[/tex] and [tex]\( w \)[/tex]:
[tex]\[ P = 2 \times (16 + 8) \][/tex]
[tex]\[ P = 2 \times 24 \][/tex]
[tex]\[ P = 48 \][/tex]
Therefore, the width of the rectangle is 8 meters, the length is 16 meters, and the perimeter is 48 meters.
1. Identify the variables:
- Let the width of the rectangle be denoted as [tex]\( w \)[/tex] meters.
2. Express the length in terms of the width:
- According to the problem, the length [tex]\( l \)[/tex] is twice the width. Therefore, [tex]\( l = 2w \)[/tex].
3. Formulate the equation for the area:
- The area [tex]\( A \)[/tex] of a rectangle is calculated by multiplying its length and its width. According to the problem, the area is 128 square meters.
- Thus, [tex]\( A = l \times w \)[/tex].
- Substituting the given values, we get:
[tex]\[ 128 = 2w \times w \][/tex]
4. Solve for the width [tex]\( w \)[/tex]:
- Simplify the equation:
[tex]\[ 128 = 2w^2 \][/tex]
- Divide both sides of the equation by 2:
[tex]\[ 64 = w^2 \][/tex]
- Take the square root of both sides to find [tex]\( w \)[/tex]:
[tex]\[ w = \sqrt{64} \][/tex]
[tex]\[ w = 8 \][/tex]
5. Determine the length [tex]\( l \)[/tex]:
- Remember that the length [tex]\( l \)[/tex] is twice the width:
[tex]\[ l = 2w = 2 \times 8 = 16 \][/tex]
6. Calculate the perimeter:
- The perimeter [tex]\( P \)[/tex] of a rectangle is given by the formula:
[tex]\[ P = 2 \times (l + w) \][/tex]
- Substitute the values of [tex]\( l \)[/tex] and [tex]\( w \)[/tex]:
[tex]\[ P = 2 \times (16 + 8) \][/tex]
[tex]\[ P = 2 \times 24 \][/tex]
[tex]\[ P = 48 \][/tex]
Therefore, the width of the rectangle is 8 meters, the length is 16 meters, and the perimeter is 48 meters.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.