Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the type of equation we are dealing with, let's start by simplifying and analyzing the given equation:
The given equation is:
[tex]\[ 4(x + 3) = 40 \][/tex]
First, let's distribute the 4 on the left side:
[tex]\[ 4 \cdot x + 4 \cdot 3 = 40 \][/tex]
[tex]\[ 4x + 12 = 40 \][/tex]
Next, let's isolate the variable [tex]\( x \)[/tex]. We can do this by first subtracting 12 from both sides of the equation:
[tex]\[ 4x + 12 - 12 = 40 - 12 \][/tex]
[tex]\[ 4x = 28 \][/tex]
Then, divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{28}{4} \][/tex]
[tex]\[ x = 7 \][/tex]
Now that we have simplified and solved the equation, we can see that it is of the form [tex]\( ax + b = c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants, and [tex]\( x \)[/tex] is the variable.
Therefore, the given equation is a linear equation.
So, the type of equation is:
[tex]\[ \boxed{\text{Linear}} \][/tex]
The given equation is:
[tex]\[ 4(x + 3) = 40 \][/tex]
First, let's distribute the 4 on the left side:
[tex]\[ 4 \cdot x + 4 \cdot 3 = 40 \][/tex]
[tex]\[ 4x + 12 = 40 \][/tex]
Next, let's isolate the variable [tex]\( x \)[/tex]. We can do this by first subtracting 12 from both sides of the equation:
[tex]\[ 4x + 12 - 12 = 40 - 12 \][/tex]
[tex]\[ 4x = 28 \][/tex]
Then, divide both sides by 4 to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{28}{4} \][/tex]
[tex]\[ x = 7 \][/tex]
Now that we have simplified and solved the equation, we can see that it is of the form [tex]\( ax + b = c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants, and [tex]\( x \)[/tex] is the variable.
Therefore, the given equation is a linear equation.
So, the type of equation is:
[tex]\[ \boxed{\text{Linear}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.