Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the empirical formula of the molecule, we follow these steps:
### Step 1: Determine the number of moles of each element.
#### For Nitrogen (N):
1. The mass of nitrogen given is 24.36 grams.
2. The molar mass of nitrogen (N) is 14.01 grams per mole.
[tex]\[ \text{Moles of N} = \frac{\text{mass of N}}{\text{molar mass of N}} = \frac{24.36 \, \text{g}}{14.01 \, \text{g/mol}} \approx 1.738758 \, \text{moles} \][/tex]
#### For Silver (Ag):
1. The mass of silver given is 62.64 grams.
2. The molar mass of silver (Ag) is 107.87 grams per mole.
[tex]\[ \text{Moles of Ag} = \frac{\text{mass of Ag}}{\text{molar mass of Ag}} = \frac{62.64 \, \text{g}}{107.87 \, \text{g/mol}} \approx 0.580699 \, \text{moles} \][/tex]
### Step 2: Determine the simplest mole ratio of the elements.
1. Calculate the mole ratio of nitrogen to silver:
[tex]\[ \text{Ratio of N} = \frac{\text{moles of N}}{\text{moles of Ag}} = \frac{1.738758}{0.580699} \approx 2.994 \][/tex]
This result is very close to 3.
2. Therefore, the ratio of nitrogen to silver is approximately 3:1.
### Step 3: Write the empirical formula.
Since the mole ratio of nitrogen to silver approximates to 3:1, the empirical formula is:
[tex]\[ AgN_3 \][/tex]
Thus, the correct empirical formula for the molecule is AgN₃.
### Step 1: Determine the number of moles of each element.
#### For Nitrogen (N):
1. The mass of nitrogen given is 24.36 grams.
2. The molar mass of nitrogen (N) is 14.01 grams per mole.
[tex]\[ \text{Moles of N} = \frac{\text{mass of N}}{\text{molar mass of N}} = \frac{24.36 \, \text{g}}{14.01 \, \text{g/mol}} \approx 1.738758 \, \text{moles} \][/tex]
#### For Silver (Ag):
1. The mass of silver given is 62.64 grams.
2. The molar mass of silver (Ag) is 107.87 grams per mole.
[tex]\[ \text{Moles of Ag} = \frac{\text{mass of Ag}}{\text{molar mass of Ag}} = \frac{62.64 \, \text{g}}{107.87 \, \text{g/mol}} \approx 0.580699 \, \text{moles} \][/tex]
### Step 2: Determine the simplest mole ratio of the elements.
1. Calculate the mole ratio of nitrogen to silver:
[tex]\[ \text{Ratio of N} = \frac{\text{moles of N}}{\text{moles of Ag}} = \frac{1.738758}{0.580699} \approx 2.994 \][/tex]
This result is very close to 3.
2. Therefore, the ratio of nitrogen to silver is approximately 3:1.
### Step 3: Write the empirical formula.
Since the mole ratio of nitrogen to silver approximates to 3:1, the empirical formula is:
[tex]\[ AgN_3 \][/tex]
Thus, the correct empirical formula for the molecule is AgN₃.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.