At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let’s solve the system of linear equations using Cramer's Rule. The system of equations given is:
[tex]\[ \begin{cases} -x + 2y - 3z = 1 \\ 2x + z = 0 \\ 3x - 4y + 4z = 2 \end{cases} \][/tex]
First, let's write the system in matrix form [tex]\( AX = B \)[/tex], where [tex]\( A \)[/tex] is the coefficient matrix, [tex]\( X \)[/tex] is the column vector of variables, and [tex]\( B \)[/tex] is the column vector of constants.
[tex]\[ A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 0 & 1 \\ 3 & -4 & 4 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \][/tex]
### Step 1: Calculate Determinant of [tex]\( A \)[/tex]
The determinant of [tex]\( A \)[/tex] is denoted as [tex]\( \text{det}(A) \)[/tex].
[tex]\[ \text{det}(A) = 10.000000000000002 \][/tex]
Since [tex]\(\text{det}(A) \neq 0\)[/tex], the system has a unique solution.
### Step 2: Calculate Determinant of [tex]\( A_1 \)[/tex]
Matrix [tex]\( A_1 \)[/tex] is formed by replacing the first column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_1 = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 0 & 1 \\ 2 & -4 & 4 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_1 \)[/tex] is [tex]\(\text{det}(A_1) = 7.999999999999998\)[/tex].
### Step 3: Calculate Determinant of [tex]\( A_2 \)[/tex]
Matrix [tex]\( A_2 \)[/tex] is formed by replacing the second column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_2 = \begin{pmatrix} -1 & 1 & -3 \\ 2 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_2 \)[/tex] is [tex]\(\text{det}(A_2) = -15.000000000000007\)[/tex].
### Step 4: Calculate Determinant of [tex]\( A_3 \)[/tex]
Matrix [tex]\( A_3 \)[/tex] is formed by replacing the third column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_3 = \begin{pmatrix} -1 & 2 & 1 \\ 2 & 0 & 0 \\ 3 & -4 & 2 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_3 \)[/tex] is [tex]\(\text{det}(A_3) = -16.000000000000007\)[/tex].
### Step 5: Solve for [tex]\( x, y, \)[/tex] and [tex]\( z \)[/tex] using Cramer's Rule
Cramer's Rule states that the solution for the variables [tex]\( x, y, z \)[/tex] can be found using:
[tex]\[ x = \frac{\text{det}(A_1)}{\text{det}(A)} = \frac{7.999999999999998}{10.000000000000002} = 0.7999999999999997 \][/tex]
[tex]\[ y = \frac{\text{det}(A_2)}{\text{det}(A)} = \frac{-15.000000000000007}{10.000000000000002} = -1.5000000000000004 \][/tex]
[tex]\[ z = \frac{\text{det}(A_3)}{\text{det}(A)} = \frac{-16.000000000000007}{10.000000000000002} = -1.6000000000000005 \][/tex]
### Final Solution
The solution to the system of equations is:
[tex]\[ \boxed{x = 0.7999999999999997, \, y = -1.5000000000000004, \, z = -1.6000000000000005} \][/tex]
[tex]\[ \begin{cases} -x + 2y - 3z = 1 \\ 2x + z = 0 \\ 3x - 4y + 4z = 2 \end{cases} \][/tex]
First, let's write the system in matrix form [tex]\( AX = B \)[/tex], where [tex]\( A \)[/tex] is the coefficient matrix, [tex]\( X \)[/tex] is the column vector of variables, and [tex]\( B \)[/tex] is the column vector of constants.
[tex]\[ A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 0 & 1 \\ 3 & -4 & 4 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \][/tex]
### Step 1: Calculate Determinant of [tex]\( A \)[/tex]
The determinant of [tex]\( A \)[/tex] is denoted as [tex]\( \text{det}(A) \)[/tex].
[tex]\[ \text{det}(A) = 10.000000000000002 \][/tex]
Since [tex]\(\text{det}(A) \neq 0\)[/tex], the system has a unique solution.
### Step 2: Calculate Determinant of [tex]\( A_1 \)[/tex]
Matrix [tex]\( A_1 \)[/tex] is formed by replacing the first column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_1 = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 0 & 1 \\ 2 & -4 & 4 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_1 \)[/tex] is [tex]\(\text{det}(A_1) = 7.999999999999998\)[/tex].
### Step 3: Calculate Determinant of [tex]\( A_2 \)[/tex]
Matrix [tex]\( A_2 \)[/tex] is formed by replacing the second column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_2 = \begin{pmatrix} -1 & 1 & -3 \\ 2 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_2 \)[/tex] is [tex]\(\text{det}(A_2) = -15.000000000000007\)[/tex].
### Step 4: Calculate Determinant of [tex]\( A_3 \)[/tex]
Matrix [tex]\( A_3 \)[/tex] is formed by replacing the third column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_3 = \begin{pmatrix} -1 & 2 & 1 \\ 2 & 0 & 0 \\ 3 & -4 & 2 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_3 \)[/tex] is [tex]\(\text{det}(A_3) = -16.000000000000007\)[/tex].
### Step 5: Solve for [tex]\( x, y, \)[/tex] and [tex]\( z \)[/tex] using Cramer's Rule
Cramer's Rule states that the solution for the variables [tex]\( x, y, z \)[/tex] can be found using:
[tex]\[ x = \frac{\text{det}(A_1)}{\text{det}(A)} = \frac{7.999999999999998}{10.000000000000002} = 0.7999999999999997 \][/tex]
[tex]\[ y = \frac{\text{det}(A_2)}{\text{det}(A)} = \frac{-15.000000000000007}{10.000000000000002} = -1.5000000000000004 \][/tex]
[tex]\[ z = \frac{\text{det}(A_3)}{\text{det}(A)} = \frac{-16.000000000000007}{10.000000000000002} = -1.6000000000000005 \][/tex]
### Final Solution
The solution to the system of equations is:
[tex]\[ \boxed{x = 0.7999999999999997, \, y = -1.5000000000000004, \, z = -1.6000000000000005} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.