Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let’s solve the system of linear equations using Cramer's Rule. The system of equations given is:
[tex]\[ \begin{cases} -x + 2y - 3z = 1 \\ 2x + z = 0 \\ 3x - 4y + 4z = 2 \end{cases} \][/tex]
First, let's write the system in matrix form [tex]\( AX = B \)[/tex], where [tex]\( A \)[/tex] is the coefficient matrix, [tex]\( X \)[/tex] is the column vector of variables, and [tex]\( B \)[/tex] is the column vector of constants.
[tex]\[ A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 0 & 1 \\ 3 & -4 & 4 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \][/tex]
### Step 1: Calculate Determinant of [tex]\( A \)[/tex]
The determinant of [tex]\( A \)[/tex] is denoted as [tex]\( \text{det}(A) \)[/tex].
[tex]\[ \text{det}(A) = 10.000000000000002 \][/tex]
Since [tex]\(\text{det}(A) \neq 0\)[/tex], the system has a unique solution.
### Step 2: Calculate Determinant of [tex]\( A_1 \)[/tex]
Matrix [tex]\( A_1 \)[/tex] is formed by replacing the first column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_1 = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 0 & 1 \\ 2 & -4 & 4 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_1 \)[/tex] is [tex]\(\text{det}(A_1) = 7.999999999999998\)[/tex].
### Step 3: Calculate Determinant of [tex]\( A_2 \)[/tex]
Matrix [tex]\( A_2 \)[/tex] is formed by replacing the second column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_2 = \begin{pmatrix} -1 & 1 & -3 \\ 2 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_2 \)[/tex] is [tex]\(\text{det}(A_2) = -15.000000000000007\)[/tex].
### Step 4: Calculate Determinant of [tex]\( A_3 \)[/tex]
Matrix [tex]\( A_3 \)[/tex] is formed by replacing the third column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_3 = \begin{pmatrix} -1 & 2 & 1 \\ 2 & 0 & 0 \\ 3 & -4 & 2 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_3 \)[/tex] is [tex]\(\text{det}(A_3) = -16.000000000000007\)[/tex].
### Step 5: Solve for [tex]\( x, y, \)[/tex] and [tex]\( z \)[/tex] using Cramer's Rule
Cramer's Rule states that the solution for the variables [tex]\( x, y, z \)[/tex] can be found using:
[tex]\[ x = \frac{\text{det}(A_1)}{\text{det}(A)} = \frac{7.999999999999998}{10.000000000000002} = 0.7999999999999997 \][/tex]
[tex]\[ y = \frac{\text{det}(A_2)}{\text{det}(A)} = \frac{-15.000000000000007}{10.000000000000002} = -1.5000000000000004 \][/tex]
[tex]\[ z = \frac{\text{det}(A_3)}{\text{det}(A)} = \frac{-16.000000000000007}{10.000000000000002} = -1.6000000000000005 \][/tex]
### Final Solution
The solution to the system of equations is:
[tex]\[ \boxed{x = 0.7999999999999997, \, y = -1.5000000000000004, \, z = -1.6000000000000005} \][/tex]
[tex]\[ \begin{cases} -x + 2y - 3z = 1 \\ 2x + z = 0 \\ 3x - 4y + 4z = 2 \end{cases} \][/tex]
First, let's write the system in matrix form [tex]\( AX = B \)[/tex], where [tex]\( A \)[/tex] is the coefficient matrix, [tex]\( X \)[/tex] is the column vector of variables, and [tex]\( B \)[/tex] is the column vector of constants.
[tex]\[ A = \begin{pmatrix} -1 & 2 & -3 \\ 2 & 0 & 1 \\ 3 & -4 & 4 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \][/tex]
### Step 1: Calculate Determinant of [tex]\( A \)[/tex]
The determinant of [tex]\( A \)[/tex] is denoted as [tex]\( \text{det}(A) \)[/tex].
[tex]\[ \text{det}(A) = 10.000000000000002 \][/tex]
Since [tex]\(\text{det}(A) \neq 0\)[/tex], the system has a unique solution.
### Step 2: Calculate Determinant of [tex]\( A_1 \)[/tex]
Matrix [tex]\( A_1 \)[/tex] is formed by replacing the first column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_1 = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 0 & 1 \\ 2 & -4 & 4 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_1 \)[/tex] is [tex]\(\text{det}(A_1) = 7.999999999999998\)[/tex].
### Step 3: Calculate Determinant of [tex]\( A_2 \)[/tex]
Matrix [tex]\( A_2 \)[/tex] is formed by replacing the second column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_2 = \begin{pmatrix} -1 & 1 & -3 \\ 2 & 0 & 1 \\ 3 & 2 & 4 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_2 \)[/tex] is [tex]\(\text{det}(A_2) = -15.000000000000007\)[/tex].
### Step 4: Calculate Determinant of [tex]\( A_3 \)[/tex]
Matrix [tex]\( A_3 \)[/tex] is formed by replacing the third column of [tex]\( A \)[/tex] with the column vector [tex]\( B \)[/tex]:
[tex]\[ A_3 = \begin{pmatrix} -1 & 2 & 1 \\ 2 & 0 & 0 \\ 3 & -4 & 2 \end{pmatrix} \][/tex]
The determinant of [tex]\( A_3 \)[/tex] is [tex]\(\text{det}(A_3) = -16.000000000000007\)[/tex].
### Step 5: Solve for [tex]\( x, y, \)[/tex] and [tex]\( z \)[/tex] using Cramer's Rule
Cramer's Rule states that the solution for the variables [tex]\( x, y, z \)[/tex] can be found using:
[tex]\[ x = \frac{\text{det}(A_1)}{\text{det}(A)} = \frac{7.999999999999998}{10.000000000000002} = 0.7999999999999997 \][/tex]
[tex]\[ y = \frac{\text{det}(A_2)}{\text{det}(A)} = \frac{-15.000000000000007}{10.000000000000002} = -1.5000000000000004 \][/tex]
[tex]\[ z = \frac{\text{det}(A_3)}{\text{det}(A)} = \frac{-16.000000000000007}{10.000000000000002} = -1.6000000000000005 \][/tex]
### Final Solution
The solution to the system of equations is:
[tex]\[ \boxed{x = 0.7999999999999997, \, y = -1.5000000000000004, \, z = -1.6000000000000005} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.