At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this, let's break down the problem step-by-step using the formula for kinetic energy, [tex]\( KE = \frac{1}{2} m v^2 \)[/tex].
1. Find the kinetic energy at the top of the hill:
- Mass, [tex]\( m \)[/tex] = 100 kilograms
- Speed at the top, [tex]\( v_{\text{top}} \)[/tex] = 3 meters/second
- Kinetic energy at the top, [tex]\( KE_{\text{top}} \)[/tex]:
[tex]\[ KE_{\text{top}} = \frac{1}{2} \times 100 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{\text{top}} = \frac{1}{2} \times 100 \times 9 \][/tex]
[tex]\[ KE_{\text{top}} = 50 \times 9 \][/tex]
[tex]\[ KE_{\text{top}} = 450 \, \text{joules} \][/tex]
2. Find the kinetic energy at the bottom of the hill:
- Speed at the bottom, [tex]\( v_{\text{bottom}} \)[/tex] = 2 \times 3 meters/second = 6 meters/second
- Kinetic energy at the bottom, [tex]\( KE_{\text{bottom}} \)[/tex]:
[tex]\[ KE_{\text{bottom}} = \frac{1}{2} \times 100 \, \text{kg} \times (6 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{\text{bottom}} = \frac{1}{2} \times 100 \times 36 \][/tex]
[tex]\[ KE_{\text{bottom}} = 50 \times 36 \][/tex]
[tex]\[ KE_{\text{bottom}} = 1800 \, \text{joules} \][/tex]
3. Calculate the ratio of kinetic energy at the bottom to the top:
[tex]\[ \text{Ratio} = \frac{KE_{\text{bottom}}}{KE_{\text{top}}} \][/tex]
[tex]\[ \text{Ratio} = \frac{1800}{450} \][/tex]
[tex]\[ \text{Ratio} = 4 \][/tex]
So, the kinetic energy of the roller coaster car at the bottom of the hill is 4 times its kinetic energy at the top of the hill.
The car has 450 joules of kinetic energy at the top of the hill and 1800 joules of kinetic energy at the bottom of the hill.
1. Find the kinetic energy at the top of the hill:
- Mass, [tex]\( m \)[/tex] = 100 kilograms
- Speed at the top, [tex]\( v_{\text{top}} \)[/tex] = 3 meters/second
- Kinetic energy at the top, [tex]\( KE_{\text{top}} \)[/tex]:
[tex]\[ KE_{\text{top}} = \frac{1}{2} \times 100 \, \text{kg} \times (3 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{\text{top}} = \frac{1}{2} \times 100 \times 9 \][/tex]
[tex]\[ KE_{\text{top}} = 50 \times 9 \][/tex]
[tex]\[ KE_{\text{top}} = 450 \, \text{joules} \][/tex]
2. Find the kinetic energy at the bottom of the hill:
- Speed at the bottom, [tex]\( v_{\text{bottom}} \)[/tex] = 2 \times 3 meters/second = 6 meters/second
- Kinetic energy at the bottom, [tex]\( KE_{\text{bottom}} \)[/tex]:
[tex]\[ KE_{\text{bottom}} = \frac{1}{2} \times 100 \, \text{kg} \times (6 \, \text{m/s})^2 \][/tex]
[tex]\[ KE_{\text{bottom}} = \frac{1}{2} \times 100 \times 36 \][/tex]
[tex]\[ KE_{\text{bottom}} = 50 \times 36 \][/tex]
[tex]\[ KE_{\text{bottom}} = 1800 \, \text{joules} \][/tex]
3. Calculate the ratio of kinetic energy at the bottom to the top:
[tex]\[ \text{Ratio} = \frac{KE_{\text{bottom}}}{KE_{\text{top}}} \][/tex]
[tex]\[ \text{Ratio} = \frac{1800}{450} \][/tex]
[tex]\[ \text{Ratio} = 4 \][/tex]
So, the kinetic energy of the roller coaster car at the bottom of the hill is 4 times its kinetic energy at the top of the hill.
The car has 450 joules of kinetic energy at the top of the hill and 1800 joules of kinetic energy at the bottom of the hill.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.