Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which system of equations can be graphed to find the solutions to the equation [tex]\( x^2 = 2x + 3 \)[/tex], you need to transform the given equation and determine which system reflects that transformation.
1. Start with the given equation:
[tex]\[ x^2 = 2x + 3 \][/tex]
2. Rearrange this equation to set it to zero:
[tex]\[ x^2 - 2x - 3 = 0 \][/tex]
3. The systems of equations given are:
- [tex]\(\left\{\begin{array}{l}y = x^2 + 2x + 3 \\ y = 2x + 3\end{array}\right.\)[/tex]
- [tex]\(\left\{\begin{array}{l}y = x^2 - 3 \\ y = 2x + 3\end{array}\right.\)[/tex]
- [tex]\(\left\{\begin{array}{l}y = x^2 - 2x - 3 \\ y = 2x + 3\end{array}\right.\)[/tex]
- [tex]\(\left\{\begin{array}{l}y = x^2 \\ y = 2x + 3\end{array}\right.\)[/tex]
4. To solve the original equation by finding the intersection points, we need to match the transformed equation [tex]\( x^2 - 2x - 3 = 0 \)[/tex] with the correct system. Notice that if we add [tex]\( y \)[/tex] to both sides of the equation [tex]\( x^2 - 2x - 3 = 0 \)[/tex], it becomes:
[tex]\[ y = x^2 - 2x - 3 \][/tex]
5. Now we compare this result with the systems given:
- In the first system [tex]\(\{y = x^2 + 2x + 3, y = 2x + 3\}\)[/tex], the first equation doesn't match with [tex]\( y = x^2 - 2x - 3 \)[/tex].
- In the second system [tex]\(\{y = x^2 - 3, y = 2x + 3\}\)[/tex], the first equation doesn't match with [tex]\( y = x^2 - 2x - 3 \)[/tex].
- In the third system [tex]\(\{y = x^2 - 2x - 3, y = 2x + 3\}\)[/tex], the first equation [tex]\( y = x^2 - 2x - 3 \)[/tex] matches perfectly.
- In the fourth system [tex]\(\{y = x^2, y = 2x + 3\}\)[/tex], the first equation doesn't match with [tex]\( y = x^2 - 2x - 3 \)[/tex].
So, the correct system of equations that can be graphed to find the solutions to [tex]\( x^2 = 2x + 3 \)[/tex] is:
[tex]\(\left\{\begin{array}{l} y = x^2 - 2x - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex]}.
Thus, the answer is:
[tex]\[ \boxed{3} \][/tex]
1. Start with the given equation:
[tex]\[ x^2 = 2x + 3 \][/tex]
2. Rearrange this equation to set it to zero:
[tex]\[ x^2 - 2x - 3 = 0 \][/tex]
3. The systems of equations given are:
- [tex]\(\left\{\begin{array}{l}y = x^2 + 2x + 3 \\ y = 2x + 3\end{array}\right.\)[/tex]
- [tex]\(\left\{\begin{array}{l}y = x^2 - 3 \\ y = 2x + 3\end{array}\right.\)[/tex]
- [tex]\(\left\{\begin{array}{l}y = x^2 - 2x - 3 \\ y = 2x + 3\end{array}\right.\)[/tex]
- [tex]\(\left\{\begin{array}{l}y = x^2 \\ y = 2x + 3\end{array}\right.\)[/tex]
4. To solve the original equation by finding the intersection points, we need to match the transformed equation [tex]\( x^2 - 2x - 3 = 0 \)[/tex] with the correct system. Notice that if we add [tex]\( y \)[/tex] to both sides of the equation [tex]\( x^2 - 2x - 3 = 0 \)[/tex], it becomes:
[tex]\[ y = x^2 - 2x - 3 \][/tex]
5. Now we compare this result with the systems given:
- In the first system [tex]\(\{y = x^2 + 2x + 3, y = 2x + 3\}\)[/tex], the first equation doesn't match with [tex]\( y = x^2 - 2x - 3 \)[/tex].
- In the second system [tex]\(\{y = x^2 - 3, y = 2x + 3\}\)[/tex], the first equation doesn't match with [tex]\( y = x^2 - 2x - 3 \)[/tex].
- In the third system [tex]\(\{y = x^2 - 2x - 3, y = 2x + 3\}\)[/tex], the first equation [tex]\( y = x^2 - 2x - 3 \)[/tex] matches perfectly.
- In the fourth system [tex]\(\{y = x^2, y = 2x + 3\}\)[/tex], the first equation doesn't match with [tex]\( y = x^2 - 2x - 3 \)[/tex].
So, the correct system of equations that can be graphed to find the solutions to [tex]\( x^2 = 2x + 3 \)[/tex] is:
[tex]\(\left\{\begin{array}{l} y = x^2 - 2x - 3 \\ y = 2x + 3 \end{array}\right.\)[/tex]}.
Thus, the answer is:
[tex]\[ \boxed{3} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.