Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's go through the solution step-by-step to find the limit of the function as [tex]\( x \)[/tex] approaches 0:
We are given the function:
[tex]\[ f(x) = \frac{x^2}{x^2 + 1} \][/tex]
We need to find the limit of this function as [tex]\( x \)[/tex] approaches 0:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} \][/tex]
To do this, let's analyze the behavior of the numerator and the denominator separately as [tex]\( x \)[/tex] approaches 0.
1. Numerator Analysis:
The numerator of our function is [tex]\( x^2 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, [tex]\( x^2 \)[/tex] (which is [tex]\( x \)[/tex] squared) also approaches 0. So, the numerator approaches 0.
2. Denominator Analysis:
The denominator is [tex]\( x^2 + 1 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, the term [tex]\( x^2 \)[/tex] approaches 0, and hence the denominator approaches [tex]\( 0 + 1 = 1 \)[/tex].
Now, combining these two results:
- As [tex]\( x \)[/tex] approaches 0, the numerator [tex]\( x^2 \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches 0, the denominator [tex]\( x^2 + 1 \)[/tex] approaches 1.
Thus, our limit expression becomes:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} = \frac{0}{1} = 0 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{0} \][/tex]
We are given the function:
[tex]\[ f(x) = \frac{x^2}{x^2 + 1} \][/tex]
We need to find the limit of this function as [tex]\( x \)[/tex] approaches 0:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} \][/tex]
To do this, let's analyze the behavior of the numerator and the denominator separately as [tex]\( x \)[/tex] approaches 0.
1. Numerator Analysis:
The numerator of our function is [tex]\( x^2 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, [tex]\( x^2 \)[/tex] (which is [tex]\( x \)[/tex] squared) also approaches 0. So, the numerator approaches 0.
2. Denominator Analysis:
The denominator is [tex]\( x^2 + 1 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, the term [tex]\( x^2 \)[/tex] approaches 0, and hence the denominator approaches [tex]\( 0 + 1 = 1 \)[/tex].
Now, combining these two results:
- As [tex]\( x \)[/tex] approaches 0, the numerator [tex]\( x^2 \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches 0, the denominator [tex]\( x^2 + 1 \)[/tex] approaches 1.
Thus, our limit expression becomes:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} = \frac{0}{1} = 0 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{0} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.