At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's go through the solution step-by-step to find the limit of the function as [tex]\( x \)[/tex] approaches 0:
We are given the function:
[tex]\[ f(x) = \frac{x^2}{x^2 + 1} \][/tex]
We need to find the limit of this function as [tex]\( x \)[/tex] approaches 0:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} \][/tex]
To do this, let's analyze the behavior of the numerator and the denominator separately as [tex]\( x \)[/tex] approaches 0.
1. Numerator Analysis:
The numerator of our function is [tex]\( x^2 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, [tex]\( x^2 \)[/tex] (which is [tex]\( x \)[/tex] squared) also approaches 0. So, the numerator approaches 0.
2. Denominator Analysis:
The denominator is [tex]\( x^2 + 1 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, the term [tex]\( x^2 \)[/tex] approaches 0, and hence the denominator approaches [tex]\( 0 + 1 = 1 \)[/tex].
Now, combining these two results:
- As [tex]\( x \)[/tex] approaches 0, the numerator [tex]\( x^2 \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches 0, the denominator [tex]\( x^2 + 1 \)[/tex] approaches 1.
Thus, our limit expression becomes:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} = \frac{0}{1} = 0 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{0} \][/tex]
We are given the function:
[tex]\[ f(x) = \frac{x^2}{x^2 + 1} \][/tex]
We need to find the limit of this function as [tex]\( x \)[/tex] approaches 0:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} \][/tex]
To do this, let's analyze the behavior of the numerator and the denominator separately as [tex]\( x \)[/tex] approaches 0.
1. Numerator Analysis:
The numerator of our function is [tex]\( x^2 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, [tex]\( x^2 \)[/tex] (which is [tex]\( x \)[/tex] squared) also approaches 0. So, the numerator approaches 0.
2. Denominator Analysis:
The denominator is [tex]\( x^2 + 1 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, the term [tex]\( x^2 \)[/tex] approaches 0, and hence the denominator approaches [tex]\( 0 + 1 = 1 \)[/tex].
Now, combining these two results:
- As [tex]\( x \)[/tex] approaches 0, the numerator [tex]\( x^2 \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches 0, the denominator [tex]\( x^2 + 1 \)[/tex] approaches 1.
Thus, our limit expression becomes:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} = \frac{0}{1} = 0 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{0} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.