Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's go through the solution step-by-step to find the limit of the function as [tex]\( x \)[/tex] approaches 0:
We are given the function:
[tex]\[ f(x) = \frac{x^2}{x^2 + 1} \][/tex]
We need to find the limit of this function as [tex]\( x \)[/tex] approaches 0:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} \][/tex]
To do this, let's analyze the behavior of the numerator and the denominator separately as [tex]\( x \)[/tex] approaches 0.
1. Numerator Analysis:
The numerator of our function is [tex]\( x^2 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, [tex]\( x^2 \)[/tex] (which is [tex]\( x \)[/tex] squared) also approaches 0. So, the numerator approaches 0.
2. Denominator Analysis:
The denominator is [tex]\( x^2 + 1 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, the term [tex]\( x^2 \)[/tex] approaches 0, and hence the denominator approaches [tex]\( 0 + 1 = 1 \)[/tex].
Now, combining these two results:
- As [tex]\( x \)[/tex] approaches 0, the numerator [tex]\( x^2 \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches 0, the denominator [tex]\( x^2 + 1 \)[/tex] approaches 1.
Thus, our limit expression becomes:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} = \frac{0}{1} = 0 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{0} \][/tex]
We are given the function:
[tex]\[ f(x) = \frac{x^2}{x^2 + 1} \][/tex]
We need to find the limit of this function as [tex]\( x \)[/tex] approaches 0:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} \][/tex]
To do this, let's analyze the behavior of the numerator and the denominator separately as [tex]\( x \)[/tex] approaches 0.
1. Numerator Analysis:
The numerator of our function is [tex]\( x^2 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, [tex]\( x^2 \)[/tex] (which is [tex]\( x \)[/tex] squared) also approaches 0. So, the numerator approaches 0.
2. Denominator Analysis:
The denominator is [tex]\( x^2 + 1 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, the term [tex]\( x^2 \)[/tex] approaches 0, and hence the denominator approaches [tex]\( 0 + 1 = 1 \)[/tex].
Now, combining these two results:
- As [tex]\( x \)[/tex] approaches 0, the numerator [tex]\( x^2 \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches 0, the denominator [tex]\( x^2 + 1 \)[/tex] approaches 1.
Thus, our limit expression becomes:
[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} = \frac{0}{1} = 0 \][/tex]
Therefore, the limit is:
[tex]\[ \boxed{0} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.