Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Calculate the limit:
[tex]\[ \lim _{x \rightarrow 0} \frac{x^2}{x^2+1} \][/tex]


Sagot :

Sure, let's go through the solution step-by-step to find the limit of the function as [tex]\( x \)[/tex] approaches 0:

We are given the function:

[tex]\[ f(x) = \frac{x^2}{x^2 + 1} \][/tex]

We need to find the limit of this function as [tex]\( x \)[/tex] approaches 0:

[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} \][/tex]

To do this, let's analyze the behavior of the numerator and the denominator separately as [tex]\( x \)[/tex] approaches 0.

1. Numerator Analysis:
The numerator of our function is [tex]\( x^2 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, [tex]\( x^2 \)[/tex] (which is [tex]\( x \)[/tex] squared) also approaches 0. So, the numerator approaches 0.

2. Denominator Analysis:
The denominator is [tex]\( x^2 + 1 \)[/tex]. As [tex]\( x \)[/tex] approaches 0, the term [tex]\( x^2 \)[/tex] approaches 0, and hence the denominator approaches [tex]\( 0 + 1 = 1 \)[/tex].

Now, combining these two results:

- As [tex]\( x \)[/tex] approaches 0, the numerator [tex]\( x^2 \)[/tex] approaches 0.
- As [tex]\( x \)[/tex] approaches 0, the denominator [tex]\( x^2 + 1 \)[/tex] approaches 1.

Thus, our limit expression becomes:

[tex]\[ \lim_{x \to 0} \frac{x^2}{x^2 + 1} = \frac{0}{1} = 0 \][/tex]

Therefore, the limit is:

[tex]\[ \boxed{0} \][/tex]