Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To calculate the standard enthalpy change of the reaction [tex]\(\Delta H_{\text{rxn}}^0\)[/tex] for the reaction:
[tex]\[2 \text{H}_2\text{O}_2(l) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g),\][/tex]
we need to apply the following formula:
[tex]\[ \Delta H_{\text{rxn}}^0 = \sum \Delta H_f^0 (\text{products}) - \sum \Delta H_f^0 (\text{reactants}). \][/tex]
1. Identify the standard enthalpies of formation ([tex]\(\Delta H_f^0\)[/tex]) for each compound involved:
- [tex]\(\Delta H_f^0 \text{(H}_2\text{O}_2(l)) = -187.8 \ \text{kJ/mol}\)[/tex]
- [tex]\(\Delta H_f^0 \text{(H}_2\text{O}(l)) = -285.8 \ \text{kJ/mol}\)[/tex]
- [tex]\(\Delta H_f^0 \text{(O}_2(g)) = 0 \ \text{kJ/mol}\)[/tex]
2. Calculate the sum of [tex]\(\Delta H_f^0\)[/tex] for the products:
- The products are [tex]\(2 \text{H}_2\text{O}(l)\)[/tex] and [tex]\(\text{O}_2(g)\)[/tex].
- Therefore:
[tex]\[ \sum \Delta H_f^0 (\text{products}) = 2 \times \Delta H_f^0 \text{(H}_2\text{O}(l)) + 1 \times \Delta H_f^0 \text{(O}_2(g)). \][/tex]
- Substituting the values:
[tex]\[ \sum \Delta H_f^0 (\text{products}) = 2 \times (-285.8 \ \text{kJ/mol}) + 1 \times (0 \ \text{kJ/mol}) = -571.6 \ \text{kJ/mol}. \][/tex]
3. Calculate the sum of [tex]\(\Delta H_f^0\)[/tex] for the reactants:
- The reactants are [tex]\(2 \text{H}_2\text{O}_2(l)\)[/tex].
- Therefore:
[tex]\[ \sum \Delta H_f^0 (\text{reactants}) = 2 \times \Delta H_f^0 \text{(H}_2\text{O}_2(l)). \][/tex]
- Substituting the value:
[tex]\[ \sum \Delta H_f^0 (\text{reactants}) = 2 \times (-187.8 \ \text{kJ/mol}) = -375.6 \ \text{kJ/mol}. \][/tex]
4. Calculate [tex]\(\Delta H_{\text{rxn}}^0\)[/tex]:
[tex]\[ \Delta H_{\text{rxn}}^0 = \sum \Delta H_f^0 (\text{products}) - \sum \Delta H_f^0 (\text{reactants}). \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{rxn}}^0 = -571.6 \ \text{kJ/mol} - (-375.6 \ \text{kJ/mol}) = -571.6 \ \text{kJ/mol} + 375.6 \ \text{kJ/mol} = -196.0 \ \text{kJ/mol}. \][/tex]
Therefore, the standard enthalpy change for the reaction [tex]\(2 \text{H}_2\text{O}_2(l) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g)\)[/tex] is:
[tex]\[ \Delta H_{\text{rxn}}^0 = -196.0 \ \text{kJ/mol}. \][/tex]
So, the correct answer is:
a. [tex]\(-196.4 \ \text{kJ/mol}\)[/tex]
(Note: The exact number is [tex]\(-196.0 \ \text{kJ/mol}\)[/tex], but considering the options given, [tex]\( \)[/tex] matches closest to the abstract value.)
[tex]\[2 \text{H}_2\text{O}_2(l) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g),\][/tex]
we need to apply the following formula:
[tex]\[ \Delta H_{\text{rxn}}^0 = \sum \Delta H_f^0 (\text{products}) - \sum \Delta H_f^0 (\text{reactants}). \][/tex]
1. Identify the standard enthalpies of formation ([tex]\(\Delta H_f^0\)[/tex]) for each compound involved:
- [tex]\(\Delta H_f^0 \text{(H}_2\text{O}_2(l)) = -187.8 \ \text{kJ/mol}\)[/tex]
- [tex]\(\Delta H_f^0 \text{(H}_2\text{O}(l)) = -285.8 \ \text{kJ/mol}\)[/tex]
- [tex]\(\Delta H_f^0 \text{(O}_2(g)) = 0 \ \text{kJ/mol}\)[/tex]
2. Calculate the sum of [tex]\(\Delta H_f^0\)[/tex] for the products:
- The products are [tex]\(2 \text{H}_2\text{O}(l)\)[/tex] and [tex]\(\text{O}_2(g)\)[/tex].
- Therefore:
[tex]\[ \sum \Delta H_f^0 (\text{products}) = 2 \times \Delta H_f^0 \text{(H}_2\text{O}(l)) + 1 \times \Delta H_f^0 \text{(O}_2(g)). \][/tex]
- Substituting the values:
[tex]\[ \sum \Delta H_f^0 (\text{products}) = 2 \times (-285.8 \ \text{kJ/mol}) + 1 \times (0 \ \text{kJ/mol}) = -571.6 \ \text{kJ/mol}. \][/tex]
3. Calculate the sum of [tex]\(\Delta H_f^0\)[/tex] for the reactants:
- The reactants are [tex]\(2 \text{H}_2\text{O}_2(l)\)[/tex].
- Therefore:
[tex]\[ \sum \Delta H_f^0 (\text{reactants}) = 2 \times \Delta H_f^0 \text{(H}_2\text{O}_2(l)). \][/tex]
- Substituting the value:
[tex]\[ \sum \Delta H_f^0 (\text{reactants}) = 2 \times (-187.8 \ \text{kJ/mol}) = -375.6 \ \text{kJ/mol}. \][/tex]
4. Calculate [tex]\(\Delta H_{\text{rxn}}^0\)[/tex]:
[tex]\[ \Delta H_{\text{rxn}}^0 = \sum \Delta H_f^0 (\text{products}) - \sum \Delta H_f^0 (\text{reactants}). \][/tex]
- Substituting the values:
[tex]\[ \Delta H_{\text{rxn}}^0 = -571.6 \ \text{kJ/mol} - (-375.6 \ \text{kJ/mol}) = -571.6 \ \text{kJ/mol} + 375.6 \ \text{kJ/mol} = -196.0 \ \text{kJ/mol}. \][/tex]
Therefore, the standard enthalpy change for the reaction [tex]\(2 \text{H}_2\text{O}_2(l) \rightarrow 2 \text{H}_2\text{O}(l) + \text{O}_2(g)\)[/tex] is:
[tex]\[ \Delta H_{\text{rxn}}^0 = -196.0 \ \text{kJ/mol}. \][/tex]
So, the correct answer is:
a. [tex]\(-196.4 \ \text{kJ/mol}\)[/tex]
(Note: The exact number is [tex]\(-196.0 \ \text{kJ/mol}\)[/tex], but considering the options given, [tex]\( \)[/tex] matches closest to the abstract value.)
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.