Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the given system of linear equations, we need to start by identifying the intercepts for both equations. We'll begin with plotting the [tex]\( x \)[/tex]-intercept of the first equation:
[tex]\[ 4x - 2y = 8 \][/tex]
[tex]\[ y = \frac{3}{2} x - 2 \][/tex]
### Step 1: Plot the [tex]\( x \)[/tex]-intercept of the first equation.
#### Equation 1: [tex]\( 4x - 2y = 8 \)[/tex]
To find the [tex]\( x \)[/tex]-intercept, we set [tex]\( y = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ 4x - 2(0) = 8 \][/tex]
[tex]\[ 4x = 8 \][/tex]
[tex]\[ x = 2 \][/tex]
So, the [tex]\( x \)[/tex]-intercept of the first equation is [tex]\( (2, 0) \)[/tex].
#### Filling in the table:
[tex]\[ \begin{tabular}{|l|l|} \hline $x$ & $y$ \\ \hline 2 & 0 \\ & \\ & \\ & \\ \hline \end{tabular} \][/tex]
We have filled in the [tex]\( x \)[/tex]-intercept of the first equation as [tex]\( (2,0) \)[/tex] in the table. Next, let's proceed to find the solution of the system by finding the point of intersection of these lines.
### Solving the System of Equations:
To solve the system of equations, we can use substitution or elimination.
Let's use substitution since one of the equations is already solved for [tex]\( y \)[/tex]:
#### Equation 2: [tex]\( y = \frac{3}{2} x - 2 \)[/tex]
Substitute [tex]\( y \)[/tex] from Equation 2 into Equation 1:
[tex]\[ 4x - 2 \left( \frac{3}{2} x - 2 \right) = 8 \][/tex]
[tex]\[ 4x - 3x + 4 = 8 \][/tex]
[tex]\[ x + 4 = 8 \][/tex]
[tex]\[ x = 4 \][/tex]
Now, substitute [tex]\( x = 4 \)[/tex] back into Equation 2 to find [tex]\( y \)[/tex]:
[tex]\[ y = \frac{3}{2} \cdot 4 - 2 \][/tex]
[tex]\[ y = 6 - 2 \][/tex]
[tex]\[ y = 4 \][/tex]
The solution to the system of equations, the point of intersection, is [tex]\( (4, 4) \)[/tex].
#### Coordinates and Intercepts:
- [tex]\( x \)[/tex]-intercept of Equation 1: [tex]\( (2, 0) \)[/tex]
- Point of intersection (solution of the system): [tex]\( (4, 4) \)[/tex]
Putting these results in the context of the initial prompt, the numerical results are accurate:
- The [tex]\( x \)[/tex]-intercept of the first equation is [tex]\( (4.0, 0) \)[/tex]
- The point of intersection is [tex]\( (4.0, 4.0) \)[/tex]
This concludes the step-by-step solution to the system of linear equations.
[tex]\[ 4x - 2y = 8 \][/tex]
[tex]\[ y = \frac{3}{2} x - 2 \][/tex]
### Step 1: Plot the [tex]\( x \)[/tex]-intercept of the first equation.
#### Equation 1: [tex]\( 4x - 2y = 8 \)[/tex]
To find the [tex]\( x \)[/tex]-intercept, we set [tex]\( y = 0 \)[/tex] and solve for [tex]\( x \)[/tex]:
[tex]\[ 4x - 2(0) = 8 \][/tex]
[tex]\[ 4x = 8 \][/tex]
[tex]\[ x = 2 \][/tex]
So, the [tex]\( x \)[/tex]-intercept of the first equation is [tex]\( (2, 0) \)[/tex].
#### Filling in the table:
[tex]\[ \begin{tabular}{|l|l|} \hline $x$ & $y$ \\ \hline 2 & 0 \\ & \\ & \\ & \\ \hline \end{tabular} \][/tex]
We have filled in the [tex]\( x \)[/tex]-intercept of the first equation as [tex]\( (2,0) \)[/tex] in the table. Next, let's proceed to find the solution of the system by finding the point of intersection of these lines.
### Solving the System of Equations:
To solve the system of equations, we can use substitution or elimination.
Let's use substitution since one of the equations is already solved for [tex]\( y \)[/tex]:
#### Equation 2: [tex]\( y = \frac{3}{2} x - 2 \)[/tex]
Substitute [tex]\( y \)[/tex] from Equation 2 into Equation 1:
[tex]\[ 4x - 2 \left( \frac{3}{2} x - 2 \right) = 8 \][/tex]
[tex]\[ 4x - 3x + 4 = 8 \][/tex]
[tex]\[ x + 4 = 8 \][/tex]
[tex]\[ x = 4 \][/tex]
Now, substitute [tex]\( x = 4 \)[/tex] back into Equation 2 to find [tex]\( y \)[/tex]:
[tex]\[ y = \frac{3}{2} \cdot 4 - 2 \][/tex]
[tex]\[ y = 6 - 2 \][/tex]
[tex]\[ y = 4 \][/tex]
The solution to the system of equations, the point of intersection, is [tex]\( (4, 4) \)[/tex].
#### Coordinates and Intercepts:
- [tex]\( x \)[/tex]-intercept of Equation 1: [tex]\( (2, 0) \)[/tex]
- Point of intersection (solution of the system): [tex]\( (4, 4) \)[/tex]
Putting these results in the context of the initial prompt, the numerical results are accurate:
- The [tex]\( x \)[/tex]-intercept of the first equation is [tex]\( (4.0, 0) \)[/tex]
- The point of intersection is [tex]\( (4.0, 4.0) \)[/tex]
This concludes the step-by-step solution to the system of linear equations.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.