Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Alright, let's analyze each of the given systems of linear equations step-by-step and determine the number of solutions for each system.
### System 1:
[tex]\[ y = -2x + 5 \][/tex]
[tex]\[ 2x + y = -7 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -2x + 5 \)[/tex] into [tex]\( 2x + y = -7 \)[/tex]:
[tex]\[ 2x + (-2x + 5) = -7 \][/tex]
2. Simplify the equation:
[tex]\[ 5 = -7 \][/tex]
This results in a contradiction. Therefore, the first system has no solution.
### System 2:
[tex]\[ y = x + 6 \][/tex]
[tex]\[ 3x - 3y = -18 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = x + 6 \)[/tex] into [tex]\( 3x - 3y = -18 \)[/tex]:
[tex]\[ 3x - 3(x + 6) = -18 \][/tex]
2. Simplify the equation:
[tex]\[ 3x - 3x - 18 = -18 \implies -18 = -18 \][/tex]
This is an identity, which means the equations are dependent, and every solution of the first equation is also a solution of the second equation. Thus, the second system has infinitely many solutions.
### System 3:
[tex]\[ y = -4x + 11 \][/tex]
[tex]\[ -6x + y = 11 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -4x + 11 \)[/tex] into [tex]\( -6x + y = 11 \)[/tex]:
[tex]\[ -6x + (-4x + 11) = 11 \][/tex]
2. Simplify the equation:
[tex]\[ -6x - 4x + 11 = 11 \implies -10x + 11 = 11 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ -10x = 0 \implies x = 0 \][/tex]
4. Substitute [tex]\( x = 0 \)[/tex] back into [tex]\( y = -4x + 11 \)[/tex]:
[tex]\[ y = -4(0) + 11 = 11 \][/tex]
So, the solution is [tex]\( (0, 11) \)[/tex]. Therefore, the third system has one solution.
### Summary
- The system [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] has no solution.
- The system [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] has infinitely many solutions.
- The system [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] has one solution.
Thus, the systems match with the number of solutions as follows:
- [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] → no solution
- [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] → infinitely many solutions
- [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] → one solution
### System 1:
[tex]\[ y = -2x + 5 \][/tex]
[tex]\[ 2x + y = -7 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -2x + 5 \)[/tex] into [tex]\( 2x + y = -7 \)[/tex]:
[tex]\[ 2x + (-2x + 5) = -7 \][/tex]
2. Simplify the equation:
[tex]\[ 5 = -7 \][/tex]
This results in a contradiction. Therefore, the first system has no solution.
### System 2:
[tex]\[ y = x + 6 \][/tex]
[tex]\[ 3x - 3y = -18 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = x + 6 \)[/tex] into [tex]\( 3x - 3y = -18 \)[/tex]:
[tex]\[ 3x - 3(x + 6) = -18 \][/tex]
2. Simplify the equation:
[tex]\[ 3x - 3x - 18 = -18 \implies -18 = -18 \][/tex]
This is an identity, which means the equations are dependent, and every solution of the first equation is also a solution of the second equation. Thus, the second system has infinitely many solutions.
### System 3:
[tex]\[ y = -4x + 11 \][/tex]
[tex]\[ -6x + y = 11 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -4x + 11 \)[/tex] into [tex]\( -6x + y = 11 \)[/tex]:
[tex]\[ -6x + (-4x + 11) = 11 \][/tex]
2. Simplify the equation:
[tex]\[ -6x - 4x + 11 = 11 \implies -10x + 11 = 11 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ -10x = 0 \implies x = 0 \][/tex]
4. Substitute [tex]\( x = 0 \)[/tex] back into [tex]\( y = -4x + 11 \)[/tex]:
[tex]\[ y = -4(0) + 11 = 11 \][/tex]
So, the solution is [tex]\( (0, 11) \)[/tex]. Therefore, the third system has one solution.
### Summary
- The system [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] has no solution.
- The system [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] has infinitely many solutions.
- The system [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] has one solution.
Thus, the systems match with the number of solutions as follows:
- [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] → no solution
- [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] → infinitely many solutions
- [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] → one solution
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.