Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Alright, let's analyze each of the given systems of linear equations step-by-step and determine the number of solutions for each system.
### System 1:
[tex]\[ y = -2x + 5 \][/tex]
[tex]\[ 2x + y = -7 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -2x + 5 \)[/tex] into [tex]\( 2x + y = -7 \)[/tex]:
[tex]\[ 2x + (-2x + 5) = -7 \][/tex]
2. Simplify the equation:
[tex]\[ 5 = -7 \][/tex]
This results in a contradiction. Therefore, the first system has no solution.
### System 2:
[tex]\[ y = x + 6 \][/tex]
[tex]\[ 3x - 3y = -18 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = x + 6 \)[/tex] into [tex]\( 3x - 3y = -18 \)[/tex]:
[tex]\[ 3x - 3(x + 6) = -18 \][/tex]
2. Simplify the equation:
[tex]\[ 3x - 3x - 18 = -18 \implies -18 = -18 \][/tex]
This is an identity, which means the equations are dependent, and every solution of the first equation is also a solution of the second equation. Thus, the second system has infinitely many solutions.
### System 3:
[tex]\[ y = -4x + 11 \][/tex]
[tex]\[ -6x + y = 11 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -4x + 11 \)[/tex] into [tex]\( -6x + y = 11 \)[/tex]:
[tex]\[ -6x + (-4x + 11) = 11 \][/tex]
2. Simplify the equation:
[tex]\[ -6x - 4x + 11 = 11 \implies -10x + 11 = 11 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ -10x = 0 \implies x = 0 \][/tex]
4. Substitute [tex]\( x = 0 \)[/tex] back into [tex]\( y = -4x + 11 \)[/tex]:
[tex]\[ y = -4(0) + 11 = 11 \][/tex]
So, the solution is [tex]\( (0, 11) \)[/tex]. Therefore, the third system has one solution.
### Summary
- The system [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] has no solution.
- The system [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] has infinitely many solutions.
- The system [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] has one solution.
Thus, the systems match with the number of solutions as follows:
- [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] → no solution
- [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] → infinitely many solutions
- [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] → one solution
### System 1:
[tex]\[ y = -2x + 5 \][/tex]
[tex]\[ 2x + y = -7 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -2x + 5 \)[/tex] into [tex]\( 2x + y = -7 \)[/tex]:
[tex]\[ 2x + (-2x + 5) = -7 \][/tex]
2. Simplify the equation:
[tex]\[ 5 = -7 \][/tex]
This results in a contradiction. Therefore, the first system has no solution.
### System 2:
[tex]\[ y = x + 6 \][/tex]
[tex]\[ 3x - 3y = -18 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = x + 6 \)[/tex] into [tex]\( 3x - 3y = -18 \)[/tex]:
[tex]\[ 3x - 3(x + 6) = -18 \][/tex]
2. Simplify the equation:
[tex]\[ 3x - 3x - 18 = -18 \implies -18 = -18 \][/tex]
This is an identity, which means the equations are dependent, and every solution of the first equation is also a solution of the second equation. Thus, the second system has infinitely many solutions.
### System 3:
[tex]\[ y = -4x + 11 \][/tex]
[tex]\[ -6x + y = 11 \][/tex]
Step-by-Step:
1. Substitute [tex]\( y = -4x + 11 \)[/tex] into [tex]\( -6x + y = 11 \)[/tex]:
[tex]\[ -6x + (-4x + 11) = 11 \][/tex]
2. Simplify the equation:
[tex]\[ -6x - 4x + 11 = 11 \implies -10x + 11 = 11 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ -10x = 0 \implies x = 0 \][/tex]
4. Substitute [tex]\( x = 0 \)[/tex] back into [tex]\( y = -4x + 11 \)[/tex]:
[tex]\[ y = -4(0) + 11 = 11 \][/tex]
So, the solution is [tex]\( (0, 11) \)[/tex]. Therefore, the third system has one solution.
### Summary
- The system [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] has no solution.
- The system [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] has infinitely many solutions.
- The system [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] has one solution.
Thus, the systems match with the number of solutions as follows:
- [tex]\( y = -2x + 5 \)[/tex] and [tex]\( 2x + y = -7 \)[/tex] → no solution
- [tex]\( y = x + 6 \)[/tex] and [tex]\( 3x - 3y = -18 \)[/tex] → infinitely many solutions
- [tex]\( y = -4x + 11 \)[/tex] and [tex]\( -6x + y = 11 \)[/tex] → one solution
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.