Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the magnitude of the magnetic force acting on the charge, we use the formula for the magnetic force on a moving charge:
[tex]\[ F = qvB \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge,
- [tex]\( B \)[/tex] is the magnetic field strength.
We are given the following values:
- Charge ([tex]\( q \)[/tex]) = [tex]\( 5.0 \times 10^{-7} \)[/tex] C (Coulombs)
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 2.6 \times 10^5 \)[/tex] m/s (meters per second)
- Magnetic field strength ([tex]\( B \)[/tex]) = [tex]\( 1.8 \times 10^{-2} \)[/tex] T (Tesla)
Substituting these values into the formula, we get:
[tex]\[ F = (5.0 \times 10^{-7} \, \text{C}) \times (2.6 \times 10^5 \, \text{m/s}) \times (1.8 \times 10^{-2} \, \text{T}) \][/tex]
Calculating the product step-by-step:
1. First, multiply the charge and the velocity:
[tex]\[ (5.0 \times 10^{-7}) \times (2.6 \times 10^5) = 1.3 \times 10^{-1} \][/tex]
2. Next, multiply the result by the magnetic field strength:
[tex]\[ (1.3 \times 10^{-1}) \times (1.8 \times 10^{-2}) \][/tex]
3. Finally:
[tex]\[ 1.3 \times 1.8 \times 10^{-1} \times 10^{-2} = 2.34 \times 10^{-3} \, \text{N} \][/tex]
Therefore, the magnitude of the magnetic force acting on the charge is [tex]\(2.34 \times 10^{-3} \, \text{N}\)[/tex].
Comparing this to the provided choices:
- [tex]\(0 \, \text{N}\)[/tex]
- [tex]\(2.3 \times 10^{-3} \, \text{N}\)[/tex]
- [tex]\(23 \, \text{N}\)[/tex]
- [tex]\(2.3 \times 10^{11} \, \text{N}\)[/tex]
The closest and correct choice is:
[tex]\[ 2.3 \times 10^{-3} \, \text{N} \][/tex]
[tex]\[ F = qvB \][/tex]
where:
- [tex]\( F \)[/tex] is the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge,
- [tex]\( B \)[/tex] is the magnetic field strength.
We are given the following values:
- Charge ([tex]\( q \)[/tex]) = [tex]\( 5.0 \times 10^{-7} \)[/tex] C (Coulombs)
- Velocity ([tex]\( v \)[/tex]) = [tex]\( 2.6 \times 10^5 \)[/tex] m/s (meters per second)
- Magnetic field strength ([tex]\( B \)[/tex]) = [tex]\( 1.8 \times 10^{-2} \)[/tex] T (Tesla)
Substituting these values into the formula, we get:
[tex]\[ F = (5.0 \times 10^{-7} \, \text{C}) \times (2.6 \times 10^5 \, \text{m/s}) \times (1.8 \times 10^{-2} \, \text{T}) \][/tex]
Calculating the product step-by-step:
1. First, multiply the charge and the velocity:
[tex]\[ (5.0 \times 10^{-7}) \times (2.6 \times 10^5) = 1.3 \times 10^{-1} \][/tex]
2. Next, multiply the result by the magnetic field strength:
[tex]\[ (1.3 \times 10^{-1}) \times (1.8 \times 10^{-2}) \][/tex]
3. Finally:
[tex]\[ 1.3 \times 1.8 \times 10^{-1} \times 10^{-2} = 2.34 \times 10^{-3} \, \text{N} \][/tex]
Therefore, the magnitude of the magnetic force acting on the charge is [tex]\(2.34 \times 10^{-3} \, \text{N}\)[/tex].
Comparing this to the provided choices:
- [tex]\(0 \, \text{N}\)[/tex]
- [tex]\(2.3 \times 10^{-3} \, \text{N}\)[/tex]
- [tex]\(23 \, \text{N}\)[/tex]
- [tex]\(2.3 \times 10^{11} \, \text{N}\)[/tex]
The closest and correct choice is:
[tex]\[ 2.3 \times 10^{-3} \, \text{N} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.