Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Efectuar:

[tex]\[ E = \sqrt{5 + 2 \sqrt{6}} \cdot \sqrt{5 - 2 \sqrt{6}} \][/tex]


Sagot :

Certainly! Let's solve the expression:

[tex]\[ E = \sqrt{5 + 2 \sqrt{6}} \cdot \sqrt{5 - 2 \sqrt{6}} \][/tex]

First, let's define two terms for simplicity:
[tex]\[ a = \sqrt{5 + 2 \sqrt{6}} \][/tex]
[tex]\[ b = \sqrt{5 - 2 \sqrt{6}} \][/tex]

We need to find the product [tex]\( E = a \cdot b \)[/tex].

To find this, we will consider the product of the expressions under the square roots:
[tex]\[ E^2 = (\sqrt{5 + 2 \sqrt{6}} \cdot \sqrt{5 - 2 \sqrt{6}})^2 \][/tex]

When the square roots are multiplied and squared, we get:
[tex]\[ E^2 = (5 + 2 \sqrt{6})(5 - 2 \sqrt{6}) \][/tex]

Recall the algebraic identity for the difference of squares:
[tex]\[ (x + y)(x - y) = x^2 - y^2 \][/tex]

Here, [tex]\( x = 5 \)[/tex] and [tex]\( y = 2 \sqrt{6} \)[/tex]. Applying this identity:
[tex]\[ E^2 = 5^2 - (2 \sqrt{6})^2 \][/tex]

Calculate each square separately:
[tex]\[ 5^2 = 25 \][/tex]
[tex]\[ (2 \sqrt{6})^2 = 4 \cdot 6 = 24 \][/tex]

So we have:
[tex]\[ E^2 = 25 - 24 = 1 \][/tex]

Taking the square root of both sides, we find:
[tex]\[ E = \sqrt{1} = 1 \][/tex]

Thus, the result of the original expression is:
[tex]\[ E = 1 \][/tex]

Upon verification with numerical calculations:
- We have [tex]\( \sqrt{5 + 2 \sqrt{6}} \approx 3.146264369941972 \)[/tex]
- and [tex]\( \sqrt{5 - 2 \sqrt{6}} \approx 0.31783724519578294 \)[/tex].

Their product is:
[tex]\[ 3.146264369941972 \times 0.31783724519578294 \approx 1.000000000000002 \][/tex]

Considering the small numerical tolerance or rounding errors, we can confidently conclude:
[tex]\[ E = 1 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.