Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether [tex]\(\sqrt{169}\)[/tex] is rational or irrational, follow these steps:
1. Identify the given number under the square root: We have [tex]\(\sqrt{169}\)[/tex].
2. Compute the square root of 169:
[tex]\[ \sqrt{169} = 13 \][/tex]
3. Understand the properties of rational and irrational numbers:
- A rational number is a number that can be expressed as the quotient of two integers (i.e., it can be written as [tex]\(\frac{a}{b}\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers and [tex]\(b \neq 0\)[/tex]).
- An irrational number cannot be expressed as the quotient of two integers. It has a non-repeating, non-terminating decimal expansion.
4. Determine if the result is an integer:
- The square root of 169 is 13.
- 13 is an integer.
5. Conclude the nature of the number:
- Since 13 is an integer, and integers are rational numbers (because any integer [tex]\(n\)[/tex] can be written as [tex]\(\frac{n}{1}\)[/tex], which fits the definition of a rational number).
Therefore, [tex]\(\sqrt{169} = 13\)[/tex] is a rational number.
The answer is:
[tex]\[ \text{Rational} \][/tex]
1. Identify the given number under the square root: We have [tex]\(\sqrt{169}\)[/tex].
2. Compute the square root of 169:
[tex]\[ \sqrt{169} = 13 \][/tex]
3. Understand the properties of rational and irrational numbers:
- A rational number is a number that can be expressed as the quotient of two integers (i.e., it can be written as [tex]\(\frac{a}{b}\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers and [tex]\(b \neq 0\)[/tex]).
- An irrational number cannot be expressed as the quotient of two integers. It has a non-repeating, non-terminating decimal expansion.
4. Determine if the result is an integer:
- The square root of 169 is 13.
- 13 is an integer.
5. Conclude the nature of the number:
- Since 13 is an integer, and integers are rational numbers (because any integer [tex]\(n\)[/tex] can be written as [tex]\(\frac{n}{1}\)[/tex], which fits the definition of a rational number).
Therefore, [tex]\(\sqrt{169} = 13\)[/tex] is a rational number.
The answer is:
[tex]\[ \text{Rational} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.