Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the average rate of change of the function [tex]\( f(t) = 2 + \cos t \)[/tex] over the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex], we will follow these steps:
1. Evaluate the function at the endpoints of the interval:
- Calculate [tex]\( f\left(\frac{\pi}{2}\right) \)[/tex]:
[tex]\[ f\left(\frac{\pi}{2}\right) = 2 + \cos\left(\frac{\pi}{2}\right) \][/tex]
Since [tex]\(\cos\left(\frac{\pi}{2}\right) = 0\)[/tex], we have:
[tex]\[ f\left(\frac{\pi}{2}\right) = 2 + 0 = 2 \][/tex]
- Calculate [tex]\( f(\pi) \)[/tex]:
[tex]\[ f(\pi) = 2 + \cos(\pi) \][/tex]
Since [tex]\(\cos(\pi) = -1\)[/tex], we have:
[tex]\[ f(\pi) = 2 + (-1) = 1 \][/tex]
2. Determine the change in the function values:
[tex]\[ \Delta f = f(\pi) - f\left(\frac{\pi}{2}\right) = 1 - 2 = -1 \][/tex]
3. Determine the change in the [tex]\( t \)[/tex] values:
[tex]\[ \Delta t = \pi - \frac{\pi}{2} = \frac{\pi}{2} \][/tex]
4. Calculate the average rate of change:
[tex]\[ \text{Average Rate of Change} = \frac{\Delta f}{\Delta t} = \frac{-1}{\frac{\pi}{2}} = -\frac{2}{\pi} \][/tex]
Hence, the average rate of change of [tex]\( f(t) \)[/tex] over the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] is [tex]\(-\frac{2}{\pi}\)[/tex], which is approximately [tex]\(-0.6366\)[/tex].
1. Evaluate the function at the endpoints of the interval:
- Calculate [tex]\( f\left(\frac{\pi}{2}\right) \)[/tex]:
[tex]\[ f\left(\frac{\pi}{2}\right) = 2 + \cos\left(\frac{\pi}{2}\right) \][/tex]
Since [tex]\(\cos\left(\frac{\pi}{2}\right) = 0\)[/tex], we have:
[tex]\[ f\left(\frac{\pi}{2}\right) = 2 + 0 = 2 \][/tex]
- Calculate [tex]\( f(\pi) \)[/tex]:
[tex]\[ f(\pi) = 2 + \cos(\pi) \][/tex]
Since [tex]\(\cos(\pi) = -1\)[/tex], we have:
[tex]\[ f(\pi) = 2 + (-1) = 1 \][/tex]
2. Determine the change in the function values:
[tex]\[ \Delta f = f(\pi) - f\left(\frac{\pi}{2}\right) = 1 - 2 = -1 \][/tex]
3. Determine the change in the [tex]\( t \)[/tex] values:
[tex]\[ \Delta t = \pi - \frac{\pi}{2} = \frac{\pi}{2} \][/tex]
4. Calculate the average rate of change:
[tex]\[ \text{Average Rate of Change} = \frac{\Delta f}{\Delta t} = \frac{-1}{\frac{\pi}{2}} = -\frac{2}{\pi} \][/tex]
Hence, the average rate of change of [tex]\( f(t) \)[/tex] over the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] is [tex]\(-\frac{2}{\pi}\)[/tex], which is approximately [tex]\(-0.6366\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.