Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the average rate of change of the function [tex]\( f(t) = 2 + \cos t \)[/tex] over the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex], we will follow these steps:
1. Evaluate the function at the endpoints of the interval:
- Calculate [tex]\( f\left(\frac{\pi}{2}\right) \)[/tex]:
[tex]\[ f\left(\frac{\pi}{2}\right) = 2 + \cos\left(\frac{\pi}{2}\right) \][/tex]
Since [tex]\(\cos\left(\frac{\pi}{2}\right) = 0\)[/tex], we have:
[tex]\[ f\left(\frac{\pi}{2}\right) = 2 + 0 = 2 \][/tex]
- Calculate [tex]\( f(\pi) \)[/tex]:
[tex]\[ f(\pi) = 2 + \cos(\pi) \][/tex]
Since [tex]\(\cos(\pi) = -1\)[/tex], we have:
[tex]\[ f(\pi) = 2 + (-1) = 1 \][/tex]
2. Determine the change in the function values:
[tex]\[ \Delta f = f(\pi) - f\left(\frac{\pi}{2}\right) = 1 - 2 = -1 \][/tex]
3. Determine the change in the [tex]\( t \)[/tex] values:
[tex]\[ \Delta t = \pi - \frac{\pi}{2} = \frac{\pi}{2} \][/tex]
4. Calculate the average rate of change:
[tex]\[ \text{Average Rate of Change} = \frac{\Delta f}{\Delta t} = \frac{-1}{\frac{\pi}{2}} = -\frac{2}{\pi} \][/tex]
Hence, the average rate of change of [tex]\( f(t) \)[/tex] over the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] is [tex]\(-\frac{2}{\pi}\)[/tex], which is approximately [tex]\(-0.6366\)[/tex].
1. Evaluate the function at the endpoints of the interval:
- Calculate [tex]\( f\left(\frac{\pi}{2}\right) \)[/tex]:
[tex]\[ f\left(\frac{\pi}{2}\right) = 2 + \cos\left(\frac{\pi}{2}\right) \][/tex]
Since [tex]\(\cos\left(\frac{\pi}{2}\right) = 0\)[/tex], we have:
[tex]\[ f\left(\frac{\pi}{2}\right) = 2 + 0 = 2 \][/tex]
- Calculate [tex]\( f(\pi) \)[/tex]:
[tex]\[ f(\pi) = 2 + \cos(\pi) \][/tex]
Since [tex]\(\cos(\pi) = -1\)[/tex], we have:
[tex]\[ f(\pi) = 2 + (-1) = 1 \][/tex]
2. Determine the change in the function values:
[tex]\[ \Delta f = f(\pi) - f\left(\frac{\pi}{2}\right) = 1 - 2 = -1 \][/tex]
3. Determine the change in the [tex]\( t \)[/tex] values:
[tex]\[ \Delta t = \pi - \frac{\pi}{2} = \frac{\pi}{2} \][/tex]
4. Calculate the average rate of change:
[tex]\[ \text{Average Rate of Change} = \frac{\Delta f}{\Delta t} = \frac{-1}{\frac{\pi}{2}} = -\frac{2}{\pi} \][/tex]
Hence, the average rate of change of [tex]\( f(t) \)[/tex] over the interval [tex]\(\left[\frac{\pi}{2}, \pi\right]\)[/tex] is [tex]\(-\frac{2}{\pi}\)[/tex], which is approximately [tex]\(-0.6366\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.